首页> 外文学位 >Finite element-based computer simulation of motility, sorting, and deformation in biological cells.
【24h】

Finite element-based computer simulation of motility, sorting, and deformation in biological cells.

机译:基于有限元计算机的生物细胞运动,分类和变形的计算机模拟。

获取原文
获取原文并翻译 | 示例

摘要

Computer simulations are an efficient and powerful tool for investigating the complex processes involved in embryo morphogenesis. A survey of the literature shows that computer simulations have been applied at both the tissue level and the cell level. Here, a novel cell element is derived to model individual epithelial cells. Apical microfilament bundles, microtubules, intermediate filaments, adhesions and other cytoskeletal components are included in the model. The cell cytoplasm is assumed to be viscous. Each cell is allowed to undergo large deformations, but its area is kept constant using a Lagrange multiplier. Cells can rearrange and thus change the topology within the aggregate. This cell element is then used to model the behaviour of both homotypic and heterotypic cell aggregates.; In one set of simulations, a sheet of homotypic cells is subjected to large strains. Reaction forces on the edge of the sheet are calculated, and compared with analytical results. Significant shape changes and cell rearrangements are observed. The simulations show how bulk mechanical properties arise from sub-cellular structure, and provide a basis for sophisticated simulation models of an entire embryo.; In addition, heterotypic cell aggregates consisting of two kinds of cells are investigated. Important cell phenomena, including cell sorting, tissue spreading and checker-board formation, are simulated. Some hypotheses about the mechanisms of cell sorting and motility are tested. The simulation results agree with fundamental aspects of real cell behaviour. They also provide useful insights into the behaviour of embryonic cells during morphogenetic processes, and can serve as a guide to future experiments.
机译:计算机模拟是研究涉及胚胎形态发生的复杂过程的有效而强大的工具。文献调查表明,计算机模拟已应用于组织水平和细胞水平。在这里,衍生出一种新型的细胞元件来模拟单个上皮细胞。顶端微丝束,微管,中间丝,粘连和其他细胞骨架成分都包括在模型中。假定细胞质是粘性的。每个单元都可以进行大变形,但是使用拉格朗日乘数可将其面积保持恒定。单元可以重新排列,从而更改聚合中的拓扑。然后,该细胞元件用于模拟同型和异型细胞聚集体的行为。在一组模拟中,一片同型细胞经受大应变。计算板边缘上的反作用力,并将其与分析结果进行比较。观察到明显的形状变化和细胞重排。模拟显示了如何从亚细胞结构中产生大量机械性能,并为整个胚胎的复杂模拟模型提供了基础。另外,研究了由两种细胞组成的异型细胞聚集体。模拟了重要的细胞现象,包括细胞分选,组织扩散和棋盘形成。测试了有关细胞分选和运动机制的一些假设。仿真结果与真实细胞行为的基本方面一致。它们还提供了有关形态发生过程中胚胎细胞行为的有用见解,并可以作为未来实验的指南。

著录项

  • 作者

    Chen, Helen Hong.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Biology Cell.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号