首页> 外文学位 >Creep of two-phase microstructures for microelectronic applications.
【24h】

Creep of two-phase microstructures for microelectronic applications.

机译:用于微电子应用的两相微结构的蠕变。

获取原文
获取原文并翻译 | 示例

摘要

The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructures. The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructures found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructures in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from 0°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ag eutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dorn: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructures, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a microstructure contains a hard, discontinuous phase, the creep behavior of this phase is not important.
机译:低熔点温度合金的机械性能受到其蠕变行为的极大影响。这项研究调查了控制微细结构两相,低熔点温度合金蠕变行为的主要机理。选择用于研究的合金体系是In-Ag和Sn-Bi,因为它们的共晶成分代表了明显不同的微观结构。 In-Ag共晶包含不连续相,而Sn-Bi共晶则包含两个连续相。此外,这项工作还针对无铅合金生成了有用的工程数据,其联合试样几何形状可模拟微电子应用中发现的微观结构。接头测试样品的使用允许通过改变冷却速率来观察有关实际焊点中超塑性微结构的实际可达到性。 In-Ag共晶,Sn-Bi共晶,Sn-xBi固溶体和纯Bi接头的稳态蠕变性能已在0°C至90°C的温度范围内使用恒定载荷测试进行了测量。导出了本构方程来描述In-Ag共晶焊点和Sn-xBi固溶接头的稳态蠕变行为。数据由Dorn提出的形式的方程很好地表示:幂律方程适用于每个独立的蠕变机制。讨论了速率控制蠕变机理,它是所施加的剪切应力,测试温度和接头微观结构的函数。综述了有关Sn-Bi共晶稳态蠕变特性的文献数据,并将其与本研究中测得的Sn-xBi固溶体和纯Bi接头数据进行了比较。讨论了两种合金体系中组成相在控制共晶蠕变行为中的作用。通常,对于连续的两相微结构,其中每个相都表现出显着不同的蠕变行为,较坚硬或更耐蠕变的相将主导层状微结构的蠕变行为。如果微结构包含坚硬的不连续相,则该相的蠕变行为并不重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号