首页> 外文学位 >Analysis of thermosyphon heat exchangers for use in solar domestic hot water heating systems.
【24h】

Analysis of thermosyphon heat exchangers for use in solar domestic hot water heating systems.

机译:分析用于太阳能家用热水系统的热虹吸热交换器。

获取原文
获取原文并翻译 | 示例

摘要

A recent innovation in the solar industry is the use of thermosyphon heat exchangers. Determining the performance of these systems requires knowledge of how thermosyphon flow rate and heat exchanger performance vary with operating conditions. This study demonstrates that several thermosyphon heat exchanger designs operate in the laminar mixed convection regime. Empirical heat transfer and pressure drop correlations are obtained for three tube-in-shell heat exchangers (four, seven, and nine tube). Thermosyphon flow is on the shell side. Correlations are obtained with uniform heat flux on the tube walls and with a mixture of glycol and water circulating inside the tubes. Ranges of Reynolds, Prandtl, and Grashof numbers are 50 to 1800, 2.5 and 6.0, and {dollar}4times10sp5{dollar} to {dollar}1times10sp8,{dollar} respectively. Nusselt number correlations are presented in a form that combines the contributions of forced and natural convection, {dollar}rm Nusp4sb{lcub}Mixed{rcub}=Nusp4sb{lcub}Forced{rcub}+Nusp4sb{lcub}Natural{rcub}.{dollar} The Nusselt number is influenced by natural convection when the term {dollar}rm Rasb{lcub}q{rcub}sp{lcub}0.25{rcub}/(Resp{lcub}0.5{rcub}Prsp{lcub}0.33{rcub}){dollar} is greater than unity. Pressure drop through these three designs is not significantly affected by mixed convection because most pressure drop losses are at the heat exchanger inlet and outlet.; A comparison and discussion of the performance of several other heat exchanger designs (tube-in-shell and coil-in-shell designs) are presented. Generally, the coil-in-shell heat exchangers perform better than the tube-in-shell heat exchangers.; Data from all heat exchanger designs is used to develop a new one-dimensional model for thermosyphon heat exchangers in solar water heating systems. The model requires two empirically determined relationships, pressure drop as a function of water mass flow rate and the overall heat transfer coefficient-area product (UA) as a function of Reynolds, Prandtl, and Grashof number. A testing protocol is presented that describes the procedure to obtain the data for the correlations. Two new TRNSYS component models are presented, for the thermosyphon heat exchanger and thermosyphon loop. Unlike previous models, which are based on forced flow relationships, the new heat exchanger model accounts for mixed convection heat transfer and accurately predicts pressure drop in the connecting piping around the thermosyphon loop. Comparison between the model and experimental data shows excellent agreement. Daily and annual ratings for a sample thermosyphon system are presented.
机译:太阳能行业的最新创新是使用热虹吸热交换器。确定这些系统的性能需要了解热虹吸流量和热交换器性能如何随运行条件而变化。这项研究表明,几种热虹吸换热器设计在层流混合对流方式下运行。获得了三个管壳式热交换器(四个,七个和九个管)的经验传热和压降相关性。热虹吸流在壳侧。通过在管壁上均匀的热通量以及在管内循环的乙二醇和水的混合物获得相关性。雷诺数,普朗特数和格拉斯霍夫数的范围分别是50到1800、2.5和6.0,以及{美元} 4×10sp5 {美元}至{美元} 1×10sp8,{美元}。以强迫对流和自然对流的贡献相结合的形式表示Nusselt数相关性,{dol} rm Nusp4sb {lcub}混合{rcub} = Nusp4sb {lcub}强迫{rcub} + Nusp4sb {lcub}自然{rcub}。{当术语{美元} rm Rasb {lcub} q {rcub} sp {lcub} 0.25 {rcub} /(Resp {lcub} 0.5 {rcub} Prsp {lcub} 0.33 {rcub)时,Nusselt数受自然对流影响}){美元}大于团结。通过这三种设计的压降不受混合对流的影响很大,因为大多数压降损失都在热交换器的入口和出口。提出了几种其他热交换器设计(管壳式和管壳式设计)的性能的比较和讨论。通常,管壳式热交换器的性能要优于管壳式热交换器。来自所有换热器设计的数据用于为太阳能热水系统中的热虹吸换热器开发新的一维模型。该模型需要两个凭经验确定的关系,即压降与水质量流量的函数关系以及总传热系数-面积乘积(UA)与雷诺数,Prandtl和Grashof数的关系。提供了一个测试协议,该协议描述了获取相关数据的过程。提出了两种新的TRNSYS组件模型,分别用于热虹吸热交换器和热虹吸回路。与以前的模型基于强制流动关系不同,新的热交换器模型考虑了混合对流传热并准确预测了热虹吸回路周围连接管道中的压降。模型与实验数据的比较显示出极好的一致性。给出了样品热虹吸系统的每日和年度评级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号