首页> 外文学位 >Trim angle of attack of flexible wings using non-linear aerodynamics.
【24h】

Trim angle of attack of flexible wings using non-linear aerodynamics.

机译:使用非线性空气动力学来修剪柔性机翼的迎角。

获取原文
获取原文并翻译 | 示例

摘要

Multidisciplinary interactions are expected to play a significant role in the design of future high-performance aircraft (Blended-Wing Body, Truss-Braced wing; High Speed Civil transport, High-Altitude Long Endurance aircraft and future military aircraft). Also, the availability of supercomputers has made it now possible to employ high-fidelity models (Computational Fluid Dynamics for fluids and detailed finite element models for structures) at the preliminary design stage. A necessary step at that stage is to calculate the wing angle-of-attack at which the wing will generate the desired lift for the specific flight maneuver. Determination of this angle, a simple affair when the wing is rigid and the flow regime linear, becomes difficult when the wing is flexible and the flow regime non-linear. To solve this inherently nonlinear problem, a Newton's method type algorithm is developed to simultaneously calculate the deflection and the angle of attack.;The developed algorithm is tested for a wing, used for in-house aeroelasticity research at Boeing (previously McDonnell Douglas) Long Beach. The trim angle of attack is calculated for a range of desired lift values. In addition to the Newton's method algorithm, a non derivative method (NDM) based on fixed point iteration, typical of fixed angle of attack calculations in aeroelasticity, is employed. The NDM, which has been extended to be able to calculate trim angle of attack, is used for one of the cases. The Newton's method calculation converges in fewer iterations, but requires more CPU time than the NDM method. The NDM, however, results in a slightly different value of the trim angle of attack. It should be noted that NDM will converge in a larger number of iterations as the dynamic pressure increases.;For one value of the desired lift, both viscous and inviscid results were generated. The use of the inviscid flow model while not resulting in a markedly different value for the trim angle of attack, does result in a noticeable difference both in the wing deflection and the span loading when compared to the viscous results.;A crude (coarse-grain) parallel methodology was used in some of the calculations in this research. Although the codes were not parallelized, the use of modal super-position made it possible to compute the sensitivity terms on different processors of an IBM SP/2. This resulted in a decrease in wall clock time for these calculations. (Abstract shortened by UMI.).
机译:在未来的高性能飞机(混合翼机体,桁架支撑机翼;高速民用运输机,高空长耐力飞机和未来的军用飞机)的设计中,多学科的相互作用有望发挥重要作用。而且,超级计算机的可用性现在使得在初步设计阶段可以采用高保真模型(用于流体的计算流体动力学和用于结构的详细有限元模型)。在该阶段的必要步骤是计算机翼的攻角,机翼将在该攻角上为特定的飞行机动产生所需的升力。当机翼是刚性的并且流动状态是非线性的时,确定该角度是机翼是刚性的并且流动状态为线性时的简单事情,而变得困难。为了解决这个固有的非线性问题,开发了一种牛顿方法类型算法来同时计算挠度和迎角。该开发的算法在机翼上进行了测试,用于波音公司内部的空气弹性研究(长期用于麦克唐纳·道格拉斯)。海滩。针对期望的升程值范围计算修整迎角。除了牛顿法算法之外,还采用了基于定点迭代的非导数方法(NDM),该定点迭代是气动弹性中固定攻角计算的典型方法。其中一种情况使用了NDM(已扩展为可以计算微调攻角)。牛顿方法的计算收敛于更少的迭代,但是比NDM方法需要更多的CPU时间。但是,NDM会导致微调迎角值略有不同。应该注意的是,随着动压力的增加,NDM将收敛于更多的迭代中。对于所需升力的一个值,既产生粘性结果又产生不粘稠的结果。与粘性结果相比,使用无粘性流动模型虽然不会导致纵倾迎角值明显不同,但确实会导致机翼挠度和翼展载荷的明显差异。并行方法被用于本研究的某些计算中。尽管代码没有并行化,但是模态叠加的使用使得可以在IBM SP / 2的不同处理器上计算敏感度项。这导致这些计算的挂钟时间减少。 (摘要由UMI缩短。)。

著录项

  • 作者

    Cohen, David Erik.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号