首页> 外文学位 >Spatial patterns in ocean color and temperature maps: Fronts, fractals, and ecological considerations.
【24h】

Spatial patterns in ocean color and temperature maps: Fronts, fractals, and ecological considerations.

机译:海洋颜色和温度图中的空间格局:前沿,分形和生态考虑。

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneity in ocean patterns is at once intriguing and problematic. Processes such as primary production or mixing occur on a range of scales in time and in space; variability must be captured at appropriate scales with tools flexible enough to detect changes in pattern-generating processes. Frontal and fractal analyses were applied to satellite-derived sea surface temperature and ocean color imagery to describe patterns in Northwestern Atlantic shelf and slope seas. On a seasonal scale, climatological thermal fronts were most frequent in winter and were found on the continental shelf south of the NY Bight and alongshore in the Gulf of Maine. Summer thermal fronts were least numerous and were concentrated north of the NY Bight around Georges Bank and the Scotian Shelf at the entrance to the Gulf of Maine. Ocean color fronts showed similar frontal frequencies but different distributions: fewest fronts in fall/winter, concentrated in the southern Mid-Atlantic Bight, and distinctive summer fronts along the middle Mid-Atlantic Bight shelf as well as around Georges Bank. Maps of jointly occurring thermal and ocean color fronts outlined regions where biophysical coupling may be strongest: in winter along the shelf break from Cape Hatteras to Chesapeake Bay, and in summer in the Georges Bank/Nantucket Shoals domain. These occurrences were both linked to high plant biomass. On a mesoscale, monthly maps of ocean color fronts were more spatially isolated and discrete, while temperature fronts were more diffuse. Region-wide, monthly AVHRR and CZCS gradients generally trended with frontal activity; both gradients and fronts decreased as spring progressed to summer. Fractal analysis results lead us to accept the hypothesis that fractal models describe temperature (SST) and chlorophyll (CHL) patterns in semi-enclosed regions such as a warm-core ring and the crest of Georges Bank. As warm-core ring 82b aged from April to June its CHL patterns converged to resemble its SST patterns. Three scenarios were suggested concerning the prediction of SST-CHL patterns: a strong mixing regime leads to similar CHL-SST patterns, regardless of biological activity; a low mixing/high growth regime leads to different CHL-SST patterns; and a low mixing/low growth regime leads to similar CHL-SST patterns.
机译:海洋格局的异质性立刻引起人们的兴趣和问题。初级生产或混合之类的过程发生在时间和空间上的各种规模上。必须使用足够灵活的工具在适当的规模上捕获可变性,以检测模式生成过程中的变化。对卫星衍生的海面温度和海洋彩色图像进行了正面和分形分析,以描述西北大西洋大陆架和斜坡海的模式。在季节性尺度上,气候热锋在冬季最为频繁,并发现于纽约湾以南的大陆架和缅因州湾沿岸。夏季热锋数量最少,并且集中在纽约湾以北,围绕乔治银行和缅因湾入口处的斯科蒂大陆架。海洋颜色的锋面表现出相似的锋面频率,但分布却不同:秋季/冬季的锋面最少,集中在大西洋中部南部的南部,而大西洋中部中部以及乔治银行周围则是独特的夏季锋。共同出现的热力和海洋颜色前沿的地图勾勒出生物物理耦合可能最强的区域:冬季,从哈特拉斯角到切萨皮克湾的陆架断裂带,以及夏季的乔治银行/南塔基特浅滩域。这些事件均与高植物生物量有关。在中尺度上,海洋颜色前沿的月度地图在空间上更加孤立和离散,而温度前沿则更加分散。区域范围内,每月的AVHRR和CZCS梯度通常随额叶活动而变化;随着春季发展到夏季,坡度和锋面都下降。分形分析结果使我们接受这样的假设,即分形模型描述了半封闭区域(如热芯环和乔治银行顶)中的温度(SST)和叶绿素(CHL)模式。当暖芯环82b从4月到6月老化时,其CHL模式会收敛以类似于其SST模式。提出了三种有关SST-CHL模式预测的方案:强大的混合机制导致相似的CHL-SST模式,无论其生物学活性如何;低混合/高生长机制导致不同的CHL-SST模式;低混合/低生长机制会导致类似的CHL-SST模式。

著录项

  • 作者

    Chan, Christine Oiwah.;

  • 作者单位

    University of Rhode Island.;

  • 授予单位 University of Rhode Island.;
  • 学科 Biological oceanography.;Physical geography.;Ecology.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:48:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号