首页> 外文学位 >I. Chemoselective catalytic hydrogenation of alpha, beta-unsaturated aldehydes and ketones using soluble copper(I) hydrides II. Free radical alkylation of titanium(III) allyl and propargyl complexes.
【24h】

I. Chemoselective catalytic hydrogenation of alpha, beta-unsaturated aldehydes and ketones using soluble copper(I) hydrides II. Free radical alkylation of titanium(III) allyl and propargyl complexes.

机译:I.使用可溶的氢化铜(I)对α,β-不饱和醛和酮进行化学选择性催化氢化。钛(III)烯丙基和炔丙基复合物的自由基烷基化。

获取原文
获取原文并翻译 | 示例

摘要

The first part of the thesis pertains to the chemoselective catalytic hydrogenation of alpha,beta-unsaturated aldehydes and ketones to allylic alcohols using phosphine stabilized Cu(I) hydrides. The investigation has determined that dimethylphenylphosphine and 1-phenylphospholane derived copper(I) hydride catalyst systems give excellent 1,2-selectivity for the reduction of alpha,beta-unsaturated aldehydes and ketones, except in the case of some simple cyclic conjugated enones. Bidendate phosphines, trialkylphosphines and racemic dimethylbinaphthylphosphines do not generate selective and active copper(I) hydride catalysts. Interestingly, the racemic methylalkylphenylphosphine-derived catalyst series also gives good 1,2-selectivity and catalytic activity for most conjugated enal and enone substrates. More importantly, such chiral phosphine ligands can be made in nonracemic forms, and the chiral phosphines can potentially be used for future asymmetric copper(I) hydride catalyst research. The experimental results also demonstrate that catalyst selectivity and catalytic activity is very sensitive to the phosphine ligand structure; even a very small change in the phosphine ligand structure can dramatically change the catalytic reaction. In addition, changes in the reaction conditions, including the solvent, hydrogen pressure, phosphine concentration and tert-butanol co-solvent concentration, also affect the catalytic reaction. The investigation of the achiral and racemic ligands provides some basic data not only defining the ligand structure-catalyst activity relationship, but also for the development of asymmetric copper(I) hydride reduction catalysts.;The second part of the thesis describes an investigation of free radical alkylation of titanium(III) allyl and propargyl complexes. A new one-pot synthesis of titanacyclobutane complexes via Cp*2TiCl provides a very convenient method for the preparation of various beta-substituted titanacyclobutane complexes. Continued research on the intramolecular free radical cyclization of titanium(III) propargyl complexes demonstrates that the full series of bicyclic titanacyclobutene complexes with ring sizes from five to ten can all be made in high yield. Careful investigations of ancillary ligand effects find that the Cp* is not the only effective ligand for the free radical alkylation of titanium(III) propargyl complexes; the tBuCp, Cp, and 1,3-bis-TMSCp ligand sets also lead to the formation of titanacyclobutene complexes in good to excellent yields. More importantly, the investigation also shows that radical addition to these eta3-propargyl complexes is significantly facilitated by the use of stronger electron-donor ancillary ligands. The Cp* and bis-TMSCp ligand sets form titanacyclobutene complexes in high yield, while the less electron-rich tBuCp and Cp ancillary ligands lead to titanacyclobutene complexes in somewhat lower yield. Steric hindered ligands do not inhibit the radical addition reaction. An investigation of the functionalization of the titanacyclobutene complexes shows that only the Cp ligand derived titanacyclobutene complexes undergo facile ketone and isocyanide insertion reactions. Hydrolysis of the ketone insertion product generates useful organic molecules after demetallation.
机译:论文的第一部分涉及使用膦稳定的氢化铜(I)将α,β-不饱和醛和酮化学选择性催化氢化为烯丙基醇。研究已经确定,除了某些简单的环状共轭烯酮外,二甲基苯基膦和1-苯基膦烷的氢化铜(I)催化剂体系具有出色的1,2-选择性,可降低α,β-不饱和醛和酮。联苯膦,三烷基膦和外消旋二甲基双萘基膦不会生成选择性和活性的氢化铜(I)催化剂。有趣的是,外消旋甲基烷基苯基膦衍生的催化剂系列对于大多数共轭的烯醛和烯酮底物也具有良好的1,2-选择性和催化活性。更重要的是,此类手性膦配体可以非外消旋形式制备,并且手性膦可潜在地用于未来的不对称氢化铜(I)催化剂研究。实验结果还表明,催化剂的选择性和催化活性对膦配体的结构非常敏感。即使膦配体结构发生很小的变化,也可以显着改变催化反应。另外,反应条件的变化,包括溶剂,氢气压力,膦浓度和叔丁醇助溶剂浓度,也会影响催化反应。对非手性和外消旋配体的研究不仅为定义配体结构与催化剂活性之间的关系提供了基础数据,而且为不对称氢化铜(I)还原催化剂的开发提供了一些基础数据。钛(III)烯丙基和炔丙基配合物的自由基烷基化。通过Cp * 2TiCl进行的一锅法合成钛环环丁烷配合物,为制备各种β-取代的钛环环丁烷配合物提供了非常方便的方法。钛(III)炔丙基配合物的分子内自由基环化的持续研究表明,全系列的双环钛环丁烯配合物的环尺寸为5到10都可以高收率制备。对辅助配体作用的仔细研究发现,Cp *并不是唯一的钛(III)炔丙基钛配合物自由基烷基化的有效配体。 tBuCp,Cp和1,3-bis-TMSCp配体组也导致钛环环丁烯配合物的形成,产率高至极好。更重要的是,研究还表明,使用更强的电子供体辅助配体可显着促进自由基向这些eta3-炔丙基复合物中的添加。 Cp *和bis-TMSCp配体组以高收率形成钛环环丁烯配合物,而电子含量较低的tBuCp和Cp辅助配体以较低的收率形成钛环环丁烯配合物。立体位阻配体不抑制自由基加成反应。钛环丁烯配合物的功能化研究表明,只有Cp配体衍生的钛环丁烯配合物会发生容易的酮和异氰酸酯插入反应。酮插入产物的水解在脱金属后产生有用的有机分子。

著录项

  • 作者

    Chen, Jianxian.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Chemistry Inorganic.;Chemistry Organic.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 老年病学;
  • 关键词

  • 入库时间 2022-08-17 11:48:25

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号