首页> 外文学位 >The light-sensing reaction of photoactive yellow protein.
【24h】

The light-sensing reaction of photoactive yellow protein.

机译:光敏黄色蛋白的光敏反应。

获取原文
获取原文并翻译 | 示例

摘要

Light is the original source of energy for almost all current forms of life. Most organisms also use light to determine their daily and annual rhythms.;Photoreceptors form the interface between the physical light environment and the biological signaling processes in a cell. This location at the intersection of physics and biology poses problems that are unique among sensors. The light signal is very short lived and is destroyed immediately when the receptor interacts with the signal. The response to the capture of a photon therefore has to be extremely rapid. Yet at the same time the encounter has to result in a structural signal that can be passed on to a signal transduction cascade that employs regular biochemical mechanisms.;To understand how a photoreceptor is able to accomplish those two tasks we have determined the structure of three structures (ground state, early intermediate, signaling intermediate) that occur during the light cycle of Photoactive Yellow Protein (PYP) using ultra high-resolution, freeze trapping and true time-resolved crystallographic techniques. The three structures show that PYP first uses the captured photon to cause trans-to- cis isomerization of its 4-hydroxy cinnamic acid chromophore in an extremely rapid step involving only minimal atomic movements. In the second step, this change in the chromophore configuration is recognized by the protein, causing rearrangements in the active site region that propagate to the protein surface where they can be recognized by a downstream signaling partner. Based on these results we proposed a general model for protein light cycles and tested this model through the generation of site-directed mutations of key active site residues.
机译:光线是几乎所有当前生命形式的原始能源。大多数生物体还利用光来确定其日常和年度节律。光感受器形成了细胞内物理光环境与生物信号传导过程之间的界面。物理和生物学相交处的这个位置带来了传感器之间独特的问题。光信号的寿命很短,当受体与信号相互作用时会立即被破坏。因此,对光子捕获的响应必须非常迅速。然而同时,相遇必须产生结构信号,该结构信号可以传递到采用常规生化机制的信号转导级联中。为了了解感光器如何完成这两个任务,我们确定了三个结构使用超高分辨率,冷冻捕获和真正的时间分辨晶体学技术,在光敏黄色蛋白(PYP)的光循环过程中发生的结构(基态,早期中间体,信号中间体)。这三个结构表明,PYP首先使用捕获的光子,以极快的步骤(仅涉及最小的原子运动)引起其4-羟基肉桂酸发色团的反式-顺式异构化。在第二步中,发色团构型的这种变化被蛋白质识别,导致活性位点区域的重排,传播到蛋白质表面,下游信号传导伴侣可以识别它们。基于这些结果,我们提出了蛋白质光循环的通用模型,并通过关键活性位点残基的定点突变的产生测试了该模型。

著录项

  • 作者

    Genick, Ulrich Karl.;

  • 作者单位

    The Scripps Research Institute.;

  • 授予单位 The Scripps Research Institute.;
  • 学科 Biophysics General.;Biology Cell.;Biology Molecular.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号