首页> 外文学位 >A robust hybrid VLSI neural network architecture for a smart optical sensor.
【24h】

A robust hybrid VLSI neural network architecture for a smart optical sensor.

机译:用于智能光学传感器的强大的混合VLSI神经网络架构。

获取原文
获取原文并翻译 | 示例

摘要

This thesis introduces a novel approach to the design of circuits found in a very large scale integration (VLSI) implementation of an artificial neural network. A robust hybrid architecture with analog and digital elements has been developed for a fully-parallel single-chip realization of multilayer neural networks. The proposed architecture is highly modular and creates regular silicon structures that well suit a VLSI realization. The architecture employs an innovative universal building block consisting of an improved digital-analog multiplier, a new analog active nonlinear resistor and a digital weight register. The key circuit called a unified synapse-neuron allows one to realize a self-scaling sigmoidal neuron characteristic that does not have to be constantly redesigned to accommodate a varying dynamic input range that is dependent upon the number of synaptic weights connected to the input of the neuron. The effects of synaptic weight quantization noise are also shown to be reduced using a stochastic model developed in the thesis. A new resistive-type neuron circuit is presented that exhibits inherently low characteristic variations based on analyses, simulations and fabrication measurements. Moreover, as each neuron is realized by a number of compact sub-neurons that are distributed over the die area, the effects of process variations on the neuron's characteristics are minimized due to the distributed averaging effect that takes place. Increased robustness is achieved as there is a simultaneous reduction of both digital quantization effects and analog variation effects. The distributed nature of the analog neuron also has the potential to contribute to increased fault tolerance for certain types of neuron circuit failure. Circuit design, implementation and characterization are performed in a standard CMOS process at 5V and 3.3V supply voltages so as to lead to an optimized design. The purpose for this research was to develop a smart non-contact optical sensor based on a programmable neural network with an integrated photosensitive array. The theoretical and experimental work has lead to the design and realization of a highly modular and robust neural-based smart CMOS sensor with reduced interconnection areas and increased synaptic density. As a result, a larger photosensor array and a larger neural network classifier are implemented on a restricted die area. Both theoretical and experimental results are presented in the thesis.
机译:本文介绍了一种新颖的方法,用于在人工神经网络的超大规模集成(VLSI)实现中发现的电路设计。已开发出具有模拟和数字元素的强大混合体系结构,用于多层神经网络的完全并行单芯片实现。所提出的架构是高度模块化的,并创建了非常适合VLSI实现的常规硅结构。该架构采用了创新的通用构件,该构件包括改进的数模乘法器,新的模拟有源非线性电阻器和数字重量寄存器。称为统一突触神经元的关键电路使人们可以实现一种自定标的S型神经元特性,而不必不断重新设计它以适应变化的动态输入范围,该范围取决于连接到神经元输入端的突触权重的数量。神经元。使用本文开发的随机模型还可以减轻突触权重量化噪声的影响。提出了一种新的电阻型神经元电路,该电路根据分析,仿真和制造测量显示出固有的低特性变化。此外,由于每个神经元都是由分布在晶粒区域上的许多紧凑的子神经元实现的,因此,由于发生的分布平均效应,过程变化对神经元特性的影响最小。由于同时减少了数字量化效果和模拟变化效果,因此提高了鲁棒性。对于某些类型的神经元电路故障,模拟神经元的分布式特性也可能有助于提高容错能力。电路设计,实现和表征在5V和3.3V电源电压下以标准CMOS工艺执行,从而实现了优化设计。这项研究的目的是开发一种基于带有集成光敏阵列的可编程神经网络的智能非接触式光学传感器。理论和实验工作已导致设计和实现高度模块化且坚固耐用的基于神经的智能CMOS传感器,该传感器具有减小的互连区域和增加的突触密度。结果,在受限的芯片区域上实现了更大的光电传感器阵列和更大的神经网络分类器。本文给出了理论和实验结果。

著录项

  • 作者

    Djahanshahi, Hormoz.;

  • 作者单位

    University of Windsor (Canada).;

  • 授予单位 University of Windsor (Canada).;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号