首页> 外文学位 >Toward a Hydrologic Modeling System.
【24h】

Toward a Hydrologic Modeling System.

机译:建立水文模拟系统。

获取原文
获取原文并翻译 | 示例

摘要

Surface water, plant water, soil and groundwater, and the atmosphere are all linked components of the hydrologic continuum. Understanding the interaction between these components and the ability to predict the availability, variability and quality on large scale, requires an accurate and efficient solution strategy. Here we present the underpinnings of a framework referred to as Hydrologic Modeling System (HMS), to couple physics, numerics, data and computation, with the goal to simulate coupled hydrologic process interactions at multiple spatio-temporal scales. The primary component of the framework is a physics-based, spatially distributed, fully coupled, constrained unstructured mesh based Finite-Volume model that simultaneously solves integrated hydrologic processes in heterogeneous, anisotropic domains. The holistic approach developed here, emphasizes the need for efficient simulations through spatially adaptive domain decomposition strategies, use of multi-processor clusters, and seamless and dynamic flow of data between data-management systems and hydrologic models. The modeling framework has been applied from hillslope (10-100m) to catchment (100-1000m) to synoptic scales (>100km) by using different number and approximation of process equations depending on model purpose and computational constraint. Examples will demonstrate how this model provides insight into the influence of drainage from unsaturated zone on delayed water table drawdown, the role of water table position on infiltration and surface runoff, and the interaction of overland flow-groundwater exchanges in relation to the dynamics of infiltrating/exfiltrating surfaces on the hillslopes. Large scale implementation of the model in Little-Juniata Watershed (845 km2) unfolds a range of multiscale/multiprocess interactions including the influence of local upland topography and stream morphology on spatially distributed, asymmetric right-left bank river-aquifer interactions, and, the role of macropore and topography on ground water recharge magnitude, time scale and spatial distribution. Finally, the computational challenges posed by using such complex model will be addressed, along with an outlook for future efforts along these lines.
机译:地表水,植物水,土壤和地下水以及大气都是水文连续体的联系组成部分。要了解这些组件之间的相互作用以及大规模预测可用性,可变性和质量的能力,就需要准确而有效的解决方案策略。在这里,我们介绍了称为水文建模系统(HMS)的框架的基础,该框架将物理,数值,数据和计算耦合在一起,目的是在多个时空尺度上模拟耦合的水文过程相互作用。该框架的主要组成部分是基于物理的,空间分布的,完全耦合的,受约束的非结构化网格的有限体积模型,该模型可以同时解决非均质各向异性域中的综合水文过程。这里开发的整体方法强调需要通过空间自适应域分解策略,使用多处理器集群以及数据管理系统和水文模型之间的无缝动态数据流进行有效仿真。通过根据模型目的和计算约束使用不同数量和近似的过程方程,已将建模框架从山坡(10-100m)到集水区(100-1000m)到天气尺度(> 100km)应用。实例将说明该模型如何洞悉非饱和区的排水对延迟的地下水位下降的影响,地下水位对入渗和地表径流的作用以及陆上流-地下水交换与入渗动力学之间的相互作用/在山坡上渗水。该模型在Little-Juniata流域(845 km2)的大规模实施,展现了一系列多尺度/多过程的相互作用,包括局部高地地形和河流形态对空间分布的左右对称非对称河岸-含水层相互作用的影响,以及大孔和地形对地下水补给量,时间尺度和空间分布的影响最后,将解决使用这种复杂模型所带来的计算难题,并展望这些方面的未来工作。

著录项

  • 作者

    Kumar, Mukesh.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Hydrology.Engineering Civil.Agriculture Soil Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 273 p.
  • 总页数 273
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号