首页> 外文学位 >Reactions and interactions of drinking water treatment by-products: Characterization of the electrochemical formation of inorganic by-products of the electrolysis of salt brine.
【24h】

Reactions and interactions of drinking water treatment by-products: Characterization of the electrochemical formation of inorganic by-products of the electrolysis of salt brine.

机译:饮用水处理副产物的反应和相互作用:盐水电解中无机副产物的电化学形成特征。

获取原文
获取原文并翻译 | 示例

摘要

Chlorine is the most widely used oxidant for water disinfection in the United States. However, recent concern over the carcinogenicity of inorganic by-products has prompted the USEPA to set maximum contamination limits for chlorite ion and bromate ion. To comply with USEPA regulations, research has focused on alternative water disinfection techniques.; Chlorine dioxide has been considered as an alternative oxidant for water disinfection, however generation is costly and inorganic by-products (chlorite ion and chlorate ion) are still formed. Ozone is another alternative oxidant for water disinfection. Unfortunately, bromate ion is formed by the reaction of bromide ion and ozone, but more importantly ozone does not remain as a residual in the distribution system and microbial regrowth can occur.; The electrolysis of salt brine is a well known technology dating back to the early 1800's. In recent years, manufacturers have claimed that the electrolysis of salt brine can be used as a water disinfection technique by generating a mixture of chlorine, chlorine dioxide, ozone and hydrogen peroxide. Reports also indicate an increase in microbial kill along with reduced disinfection by-product formation. However, the electrolyzed brine solutions have never been fully chemically characterized.; This research is conducted to develop methods to characterize the electrolyzed brine solutions for oxidants and inorganic by-products. The difficulty in method development is to analyze for low levels of analyte in the presence of high concentrations of chlorine typically present in electrolyzed brine solutions.; Two electrolysis units are evaluated: a bench top laboratory unit (BPS) and a full-scale unit (SAL-20). Experimental results show that the electrolyzed brine solutions contain between 200 to 400 mg/L of free available chlorine (FAC: Cl2, HOCl, OCl). Neither ozone nor chlorine dioxide are detected. The inorganic by-products are measured for each unit. The BPS electrolyzed brine contains 4–5 mg/L chlorate ion, 0.05 mg/L chlorite ion and 0.05 mg/L bromate ion. The full-scale electrolyzed brine contains 1–2 mg/L chlorate ion, 0.05 mg/L chlorite ion and 1–2 mg/L bromate ion. The inorganic by-products measured will be correlated to the possible oxidants produced during the electrolysis of salt brine in order to formulate a chemical model.
机译:氯是美国最广泛用于水消毒的氧化剂。但是,最近对无机副产物的致癌性的担忧促使USEPA设定了亚氯酸盐离子和溴酸根离子的最大污染限值。为了符合USEPA法规,研究集中在替代水消毒技术上。二氧化氯被认为是水消毒的替代氧化剂,但是生成成本高昂,并且仍会形成无机副产物(亚氯酸根离子和氯酸根离子)。臭氧是用于水消毒的另一种替代氧化剂。不幸的是,溴离子是由溴离子与臭氧反应形成的,但更重要的是,臭氧不会作为残留物残留在分配系统中,并且可能会发生微生物再生。盐水的电解是一项可追溯到1800年代的众所周知的技术。近年来,制造商声称,通过产生氯,二氧化氯,臭氧和过氧化氢的混合物,盐盐水的电解可用作水消毒技术。报告还表明,微生物杀灭率的增加以及消毒副产物的形成减少。然而,电解盐溶液从未被完全化学表征。进行这项研究以开发表征氧化剂和无机副产物的电解盐水溶液的方法。方法开发的困难是在电解盐水溶液中通常存在高浓度氯的情况下分析低含量的分析物。评估了两个电解装置:台式实验室装置(BPS)和大型装置(SAL-20)。实验结果表明,电解盐水溶液中含有200至400 mg / L的游离氯(FAC:Cl 2 ,HOCl,OCl -)。既没有检测到臭氧也没有检测到二氧化氯。对每个单元测量无机副产物。 BPS电解盐水包含4–5 mg / L的氯酸根离子,<0.05 mg / L的亚氯酸根离子和<0.05 mg / L的溴酸根离子。满量程电解盐水包含1-2 mg / L的氯酸根离子,<0.05 mg / L的亚氯酸根离子和1-2 mg / L的溴酸根离子。所测得的无机副产物将与盐盐水电解过程中产生的可能氧化剂相关联,以建立化学模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号