首页> 外文学位 >Understanding and engineering two-dimensional electron gases in complex oxides.
【24h】

Understanding and engineering two-dimensional electron gases in complex oxides.

机译:了解和工程化复杂氧化物中的二维电子气。

获取原文
获取原文并翻译 | 示例

摘要

The next generation of electronic devices faces the challenge of adequately containing and controlling extremely high charge densities within structures of nanometer dimensions. Atomic-scale transistors must be thin and be able to control extremely high charge densities (>10e13/cm.;2). Silicon devicestypically have two-dimensional electron gas (2DEG) densities around 10e12/cm.;2.Nitride-based devices can sustain densities an order of magnitude higher. The "complex oxides" have recently emerged as an attractive materials system to support these developments. The demonstration of a 2DEG at the SrTiO 3/LaAlO3 interface has triggered an avalanche of research, including the unprecedentedly high density of 3x10e14/cm.;2 at SrTiO3/GdTiO3and SrTiO3/SmTiO3 interfaces. Metal-insulator (Mott) transitions that are inherent to some of these complex oxides could offer even greater prospects for enhanced functionality or novel device concepts.;The materials and heterostructures that have been explored to date are clearly only a small subset of the vast number of materials combinations that could lead to interesting phenomena. In this work we use first-principles methods to build greater understanding of the interface phenomena, so that searches can be better informed and more focused. We also develop a set of criteria that the materials and their heterostructures should satisfy to develop a high-performance 2DEG-based device. We focus in particular on the band alignment, calculating it for a variety of different potential materials.;Next, we study GdTiO3/SrTiO3/GdTiO3 heterostructures in depth, where each interface contributes excess electrons into the SrTiO3. We calculate the 2DEG formation for a superlattice containing six layers of SrTiO3, and compare with angle-resolved photoemission spectroscopy results. Together, the experimental and theoretical results conclusively show that the 2DEG results from the interface itself, and does not originate from a secondary source such as oxygen vacancies. These heterostructures also exhibit a metal-to-insulator transition as the SrTiO 3 layer thickness decreases, which could possibly be used as a "Mott field effect transistor" --- the system is very close to a metal-to-insulator transition, and modulating a small fraction of the electron density would lead to switching between the metallic and insulating phases. The mechanism behind this transition is unraveled, and we construct a bulk model of the transition based on the surprising observation that SrTiO3 itself can become a Mott insulator when doped with an extremely high density of electrons.;Building on our study of the SrTiO3/GdTiO3 interfaces, we investigate the electronic structure of GdTiO3 in detail - our calculated band gap differs markedly from past experimental values, but is consistent with recent photoluminescence measurements. We find that the presence of small hole polarons leads to a feature in the optical absorption spectrum which was previously interpreted to be the band gap. Since small hole polarons are present in all the rare-earth titanates, not only GdTiO3, the values of the band gaps (also based on optical absorption measurements) across the series will likely have to be revised. Lastly, to understand the formation of small hole polarons in the rare-earth titanates, we study point defects and impurities in GdTiO3. We also investigate how defects may impact the behavior of GdTiO3 in electronic devices.
机译:下一代电子设备面临在纳米尺寸的结构中充分容纳和控制极高电荷密度的挑战。原子级晶体管必须很薄,并且能够控制极高的电荷密度(> 10e13 / cm。; 2)。硅器件通常具有10e12 / cm.2左右的二维电子气(2DEG)密度。基于氮化物的器件可以保持更高的数量级。最近,“复合氧化物”作为一种有吸引力的材料体系出现,以支持这些发展。在SrTiO 3 / LaAlO3界面上演示2DEG引发了大量研究,包括前所未有的3x10e14 / cm。; 2在SrTiO3 / GdTiO3和SrTiO3 / SmTiO3界面上的高密度。这些复杂氧化物中某些固有的金属-绝缘体(Mott)过渡可以为增强功能或提供新颖的器件概念提供更大的前景。迄今为止,已探究的材料和异质结构显然只是绝大多数的一小部分可能导致有趣现象的材料组合。在这项工作中,我们使用第一性原理方法来建立对界面现象的更多理解,以便可以更好地了解信息并更加专注。我们还制定了一套标准,以开发高性能的基于2DEG的器件应满足材料及其异质结构的要求。我们特别关注能带对准,并针对各种不同的潜在材料进行计算。接下来,我们深入研究GdTiO3 / SrTiO3 / GdTiO3的异质结构,其中每个界面都将过量电子贡献到SrTiO3中。我们计算了包含六层SrTiO3的超晶格的2DEG形成,并与角分辨光发射光谱学结果进行了比较。总之,实验和理论结果最终表明2DEG是由界面本身产生的,而不是源自诸如氧空位的次要来源。随着SrTiO 3层厚度的减小,这些异质结构也表现出金属-绝缘体的转变,这可能可用作“莫特场效应晶体管” ---该系统非常接近金属-绝缘体的转变,并且调制一小部分电子密度将导致金属相和绝缘相之间的切换。尚未阐明这种转变背后的机理,我们基于令人惊讶的观察结果构建了转变的整体模型,该现象令人惊讶地观察到,当SrTiO3掺杂有非常高的电子密度时,它本身就可以成为Mott绝缘体;基于我们对SrTiO3 / GdTiO3的研究在界面上,我们详细研究了GdTiO3的电子结构-我们计算出的带隙与过去的实验值明显不同,但与最近的光致发光测量结果一致。我们发现小空穴极化子的存在导致了光吸收光谱中的特征,该特征先前被解释为带隙。由于所有稀土钛酸盐中都存在小空穴极化子,不仅是GdTiO3,整个系列中的带隙值(也基于光吸收测量值)都可能需要修改。最后,为了了解稀土钛酸盐中小孔极化子的形成,我们研究了GdTiO3中的点缺陷和杂质。我们还研究了缺陷如何影响GdTiO3在电子设备中的行为。

著录项

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号