首页> 外文学位 >Information processing in the auditory thalamus of the echolocating bat, Myotis lucifugus: Implications for fluttering target detection.
【24h】

Information processing in the auditory thalamus of the echolocating bat, Myotis lucifugus: Implications for fluttering target detection.

机译:回声蝙蝠听觉丘脑的信息处理:扑动目标检测的意义。

获取原文
获取原文并翻译 | 示例

摘要

The inability of the auditory system to process temporal cues can lead to deficits in speech recognition that can ultimately lead to learning and/or behavioral disorders. Therefore it is important to understand the mechanisms by which the auditory system processes time-varying signals. Echolocating bats provide a useful model to study the neural bases for the perception of time-varying signals because of their dependence on such sounds. Previous work has shown that the time-domain representation of sound undergoes a transformation between the inferior colliculus (IC) and the auditory cortex (AC) of the echolocating bat, Myotis lucifugus. Specifically, the tonic discharge patterns present in the IC are transformed into phasic patterns in the AC. There is also a degradation in the capacity for AC neurons to entrain their discharges to the temporal waveform of incoming signals when compared to IC neurons. This study examined the role of the intervening structure, the medial geniculate body (MGB), in producing these IC-to-AC transformations. Electrophysiological recordings from neurons in the MGB revealed that the unit selectivities to stimulus frequency and amplitude were not significantly different from those observed in the IC or AC. However, more than 90% of the neurons in the MGB displayed phasic discharge patterns. In addition, in response to trains of unmodulated tone pulses, the cutoff frequency for time-locked discharges (64.0 +/- 46.9 pulses per second or pps) and mean number of spikes per pulse (19.2 +/- 12.2 pps), were intermediate to those for the IC and AC. In response to amplitude-modulated pulse trains, MGB units displayed a degree of response facilitation that was intermediate to that of the IC and AC (IC: 1.32 +/- 0.33, MGB: 1.75 +/- 0.26, AC: 2.52 +/- 0.96, p < 0.01). Computational models incorporating the circuitry of the MGB suggest that co-activation of MGB intrinsic inhibitory interneurons and afferent inhibitory neurons within the IC are sufficient to reproduce the transformations observed in the experimental data. These results suggest that a portion of the IC-to-AC transformations in signal representation occurs in the MGB, and that the intrinsic circuitry of the MGB can support these transformations.
机译:听觉系统无法处理时间提示会导致语音识别不足,最终导致学习和/或行为障碍。因此,了解听觉系统处理时变信号的机制很重要。蝙蝠回声定位提供了一个有用的模型,用于研究时变信号感知的神经基础,因为它们依赖于此类声音。先前的工作表明,声音的时域表示在回声定位蝙蝠Myotis lucifugus的下丘(IC)和听觉皮层(AC)之间进行转换。具体而言,将IC中存在的强音放电模式转换为AC中的相位模式。与IC神经元相比,AC神经元将其放电携带到输入信号的时间波形的能力也会下降。这项研究检查了中间结构,内侧膝状体(MGB)在产生这些IC到AC转换中的作用。 MGB中神经元的电生理记录表明,刺激频率和幅度的单位选择性与IC或AC中观察到的无明显差异。但是,MGB中超过90%的神经元显示出相放电模式。此外,响应于一系列未调制的音调脉冲,定时放电的截止频率(每秒64.0 +/- 46.9个脉冲或pps)和每个脉冲的平均尖峰数(19.2 +/- 12.2 pps)处于中间对于那些用于IC和AC的产品。为了响应振幅调制的脉冲序列,MGB单元显示的响应促进程度介于IC和AC的中间(IC:1.32 +/- 0.33,MGB:1.75 +/- 0.26,AC:2.52 +/- 0.96,p <0.01)。结合MGB电路的计算模型表明,IC内MGB内在抑制性中间神经元和传入抑制神经元的共激活足以再现实验数据中观察到的转化。这些结果表明,信号表示中的IC到AC转换的一部分发生在MGB中,并且MGB的内部电路可以支持这些转换。

著录项

  • 作者

    Llano, Daniel Adolfo.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Neurosciences.;Animal Physiology.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:48:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号