首页> 外文学位 >Micromechanics-based durability study of lightweight thin-sheet fiber-reinforced cement composites.
【24h】

Micromechanics-based durability study of lightweight thin-sheet fiber-reinforced cement composites.

机译:基于微型力学的轻质薄板纤维增强水泥复合材料的耐久性研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation is a micromechanics based durability study of the mechanical performance of lightweight thin sheet fiber reinforced cement composites (TSFRCC). Thin sheet fiber reinforced cement composites are used extensively by the building construction industry as roofing tiles and architectural wall panels out-of-doors, so they must be able to resist environmental deterioration processes, specifically water saturation and carbonation aging here. This work provides a framework for the complete experimental and theoretical mechanical durability evaluation of TSFRCC using a fracture mechanics based approach. Three major tasks have been accomplished to achieve this goal.;The first task was to experimentally quantify the effects of environmental deterioration processes on the composite's microstructure: the fiber, the matrix and the fiber-matrix interaction region. Fiber strength tests reveal the dependence of fiber strength and stiffness on environmental deterioration processes. Composite fracture toughness testing reveals the influence of changing environment on matrix crack formation. The single fiber pullout test technique reveals the influence of environment on the fiber-matrix interaction micromechanical parameters.;The second task was to theoretically model the composite's tensile and flexural behavior as a function of changing environment using the micromechanics based durability model. With the experimentally obtained micromechanical parameters as input, the effect of water saturation and carbonation aging on the composite's constitutive relation, the fiber bridging stress vs. crack opening (sigmab-delta) relation, was quantified. In addition, the micromechanics based durability model was used to predict the environmental trends in (1) composite tensile and flexural mechanical properties, (2) composite failure (cracking and fiber), (3) crack stability and (4) crack opening for polyvinylalcohol (PVA) TSFRCC, polypropylene (PP) TSFRCC and refined cellulose (RC) TSFRCC as well as for hybrid fiber reinforced (PVA + RC and PP + RC) Hatschek produced composites. In all cases, the model predictions were compared to experimental results to ensure their accuracy.;The third task was to apply the micromechanics based durability model to asbestos, glass and carbon TSFRCC for prediction of their environmentally dependent mechanical properties. This demonstrates the model's universality. It is a powerful tool able to identify which of the composite's micromechanical modeling parameters changes as a result of environmental exposure and to quantify this change for any fiber system. This has important implications to the design of durable lightweight TSFRCC because the model can be used to tailor TSFRCC for maximum long-term mechanical durability performance.
机译:本文是基于微力学的耐久性研究的轻质薄板纤维增强水泥复合材料(TSFRCC)的机械性能。薄纤维增强水泥复合材料在建筑行业中广泛用作室外的屋面瓦和建筑墙板,因此它们必须能够抵抗环境恶化的过程,特别是此处的水饱和和碳化老化。这项工作为使用基于断裂力学的方法对TSFRCC进行完整的实验和理论机械耐久性评估提供了框架。为了实现这一目标,已经完成了三个主要任务。第一个任务是通过实验量化环境恶化过程对复合材料微观结构的影响:纤维,基质和纤维-基质相互作用区域。纤维强度测试揭示了纤维强度和刚度对环境恶化过程的依赖性。复合材料断裂韧性测试揭示了环境变化对基体裂纹形成的影响。单纤维拉拔试验技术揭示了环境对纤维与基体相互作用的微机械参数的影响。第二个任务是使用基于微力学的耐久性模型从理论上模拟复合材料的拉伸和弯曲行为,以作为环境变化的函数。以实验获得的微机械参数作为输入,量化了水饱和度和碳酸化时效对复合材料本构关系,纤维桥应力与裂纹开口(sigmab-delta)关系的影响。此外,基于微力学的耐久性模型还用于预测以下环境趋势:(1)复合材料的拉伸和弯曲机械性能;(2)复合材料的破坏(裂纹和纤维);(3)裂纹稳定性和(4)聚乙烯醇的裂纹开口(PVA)TSFRCC,聚丙烯(PP)TSFRCC和精制纤维素(RC)TSFRCC以及用于混合纤维增强的(PVA + RC和PP + RC)Hatschek生产的复合材料。在所有情况下,将模型预测结果与实验结果进行比较,以确保其准确性。第三项任务是将基于微力学的耐久性模型应用于石棉,玻璃和碳TSFRCC,以预测其环境相关的机械性能。这证明了模型的普遍性。它是一个功能强大的工具,能够识别由于环境暴露而导致复合材料的哪些微机械建模参数发生变化,并可以量化任何纤维系统的变化。这对于耐用轻量级TSFRCC的设计具有重要意义,因为该模型可用于定制TSFRCC,以实现最大的长期机械耐久性能。

著录项

  • 作者

    Kim, Patricia Jean.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Civil.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 486 p.
  • 总页数 486
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号