首页> 外文学位 >The uranyl adsorption capacity and selectivity studies on organic/inorganic hybrid sol-gel sorbents.
【24h】

The uranyl adsorption capacity and selectivity studies on organic/inorganic hybrid sol-gel sorbents.

机译:对有机/无机杂化溶胶-凝胶吸附剂的铀酰吸附能力和选择性的研究。

获取原文
获取原文并翻译 | 示例

摘要

The synthesis and properties of microporous and mesoporous uranyl-imprinted organic/inorganic hybrid sol-gel sorbents are described. Both microporous and mesoporous imprinted sorbents exhibit (1) higher selectivity and (2) higher rebinding capacities than similar nonimprinted sorbents. Mesoporous uranyl-imprinted sorbents also exhibited fast diffusion of uranyl ions into the mesopores over nonimprinted sorbents. Porous imprinted sol-gel sorbents are prepared by molecular imprinting technologies.; To prepare organic/inorganic hybrid sol-gel sorbents that are able to strongly bind to hard Lewis acid, uranyl, hard Lewis bases such as ligands coordinating through nitrogens (APTS = 3-aminopropyltimethoxysilane = (CH 3O)3SiCH2CH2CH2NH2 , AEAPS = N-[2-aminoethyl-3-aminopropyl]trimethoxysilane = (CH 3O)3SiCH2CH2CH2NHCH 2CH2NH2, Schiff base 1 represents the bifunctional ligand prepared from AEAPS and 2,3-butanedione, Schiff base 2 represents the bifunctional ligand prepared from APTS and 2,6-diacetylpyridine and ethylenediamine), and ligand coordinating through phosphorus (DPES = diethylphosphatoethyltriethoxysilane = (C2H5O)3SiCH2CHP(=O) (OC 2H5)2 have been employed.; Three different methods were employed to prepare sorbents exhibiting high uranyl affinities to uranyl: (a) The first method involved co-condensation of inorganic silyl precursors and organosilyl precursors. In these materials an organic moiety is covalently linked to a siloxane species that is hydrolyzed and grafted into the developing silicate network. Hybrid sorbents (25 mol % synthesis ratio) prepared with APTS, AEAPS, DPES, Schiff base 1 and Schiff base 2 showed higher uranyl binding capacities than the corresponding microporous; pure silicate sorbents toward the uranyl ion. However, uranyl-imprinted sorbents have not been successfully prepared because of the precipitation of uranyl-organic ligand complexes before gelation. (b) The second involved coating of organosilyl ligands on surface of preformed mesoporous silica. Coated, uranyl-imprinted sorbents prepared from ∼25 Å diameter mesoporous silica always exhibited higher surface ligand coverages and higher uranyl capacity than those of nonimprinted sorbents. Cu(II)-imprinted and uranyl-imprinted sorbents showed selective adsorption for Cu(II) and uranyl versus Zn(II)-containing solution mixtures. (c) Surface-grafting of bifunctional reagents on as-synthesized (base-catalyzed) mesoporous silica by ion-exchange reactions. Uranyl-imprinted sorbents prepared in DMSO (dimethylsulfoxide) exhibited higher surface ligand (AEAPS) coverages and higher uranyl binding capacities than those of the sorbents prepared by method (b).; Finally, new mesoporous titanium-based and phosphate-based sorbents have been prepared. Titanium-based sorbents showed higher uranyl capacity as Ti:Si ratio in mesoporous titanosilicate materials is increased. In phosphate-based sorbents prepared using a dodecylphosphate surfactant, phosphate based surface coatings remain after calcination, which have been studied with 31 P SSNMR using MAS (magic angle spinning). The phosphorus chemical shifts indicate that while no interaction between phosphate and silicon, strong interactions between phosphate and zirconium and titanium existed. These coated sorbents exhibited very strong binding (irreversible) toward uranyl. Uranyl preferentially binds in the order TiO2 ≥ ZrO2 > SiO 2 in 10−3 M uranyl solution, which is parallel with the order of metal Lewis acidity Ti ≥ Zr > Si.
机译:描述了微孔和中孔铀酰印迹有机/无机杂化溶胶-凝胶吸附剂的合成和性能。与类似的非印迹吸附剂相比,微孔和中孔印迹吸附剂都具有(1)更高的选择性和(2)更高的重结合能力。介孔的铀酰印迹吸附剂还显示出铀酰离子在非印迹吸附剂上快速扩散到中孔中。多孔印迹的溶胶-凝胶吸附剂是通过分子印迹技术制备的。要制备能够与硬路易斯酸,铀酰,硬路易斯碱(例如通过氮配位的配体)牢固结合的有机/无机杂化溶胶-凝胶吸附剂(APTS = 3-氨丙基三甲氧基硅烷=(CH 3 3 SiCH 2 CH 2 CH 2 NH 2 ,AEAPS = N- [2-氨基乙基-3-氨基丙基]三甲氧基硅烷=(CH 3 O) 3 SiCH 2 CH 2 CH 2 NHCH 2 CH 2 NH 2 ,席夫碱1代表由AEAPS和2,3制备的双功能配体-丁二酮,席夫碱2代表由APTS和2,6-二乙酰基吡啶和乙二胺制备的双官能配体,以及通过磷配位的配体(DPES =二乙基磷酸乙基乙基三乙氧基硅烷=(C 2 H 5 O) 3 SiCH 2 CHP(= O)(OC 2 H 5 2 ;;采用三种不同的方法制备具有高铀酰亲和力的吸附剂到铀酰:(a)第一种方法涉及无机甲硅烷基前体和有机甲硅烷基前体的共缩合。在这些材料中,有机部分与硅氧烷物质共价连接,该硅氧烷物质被水解并接枝到正在发展的硅酸盐网络中。用APTS,AEAPS,DPES,席夫碱1和席夫碱2制备的杂化吸附剂(合成摩尔比为25摩尔%)比相应的微孔具有更高的铀酰结合能力;纯硅酸盐对铀酰离子的吸附剂。然而,由于在凝胶化之前铀酰-有机配体络合物的沉淀,尚未成功制备出印迹有铀酰的吸附剂。 (b)第二步涉及在预制的中孔二氧化硅表面涂覆有机甲硅烷基配体。由直径约25Å的中孔二氧化硅制得的涂覆有铀酰印迹的吸附剂,与非印迹吸附剂相比,总是表现出更高的表面配体覆盖率和更高的铀酰容量。与含锌(II)的溶液混合物相比,Cu(II)印迹和铀酰印迹的吸附剂表现出对Cu(II)和铀酰的选择性吸附。 (c)通过离子交换反应在合成的(碱催化的)介孔二氧化硅表面上接枝双功能试剂。与方法(b)制备的吸附剂相比,在DMSO(二甲亚砜)中制备的铀酰印迹吸附剂表现出更高的表面配体(AEAPS)覆盖率和更高的铀酰结合能力。最后,已经制备了新的介孔钛基和磷酸盐基吸附剂。钛基吸附剂随着中孔钛硅酸盐材料中Ti:Si比的增加而显示出更高的铀酰容量。在使用十二烷基磷酸酯表面活性剂制备的磷酸酯基吸附剂中,煅烧后残留了磷酸酯基表面涂层,这已通过 31 P SSNMR使用MAS(魔角旋转)进行了研究。磷的化学位移表明,尽管磷酸盐与硅之间没有相互作用,但磷酸盐与锆和钛之间却存在强相互作用。这些包被的吸附剂对铀酰具有很强的结合力(不可逆)。在10 -3 M铀酰溶液中,铀酰优先以TiO 2 ≥ZrO 2 2 的顺序结合,这与金属路易斯酸度Ti≥Zr> Si的顺序平行。

著录项

  • 作者

    Shin, Yongsoon.;

  • 作者单位

    The University of Tennessee.;

  • 授予单位 The University of Tennessee.;
  • 学科 Environmental Sciences.; Chemistry Inorganic.; Chemistry Organic.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境科学基础理论;无机化学;有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号