首页> 外文学位 >Space-based gravitational wave astrophysics.
【24h】

Space-based gravitational wave astrophysics.

机译:天基引力波天体物理学。

获取原文
获取原文并翻译 | 示例

摘要

In the near future, several Earth-based and space-based gravitational wave observatories will be completed. With this imminent change in the tools available to observe the Universe, there is much work to be done in describing the fundamental response of our instruments to gravitational radiation, understanding the sources of gravitational radiation, and determining what can be learned about the fundamental nature of the gravitational interaction from the detection of these waves.; The first original result reported here is the determination of the sensitivity limits of a spaceborne gravitational wave observatory. Determining if particular sources of gravitational radiation are detectable by a specific gravitational observatory requires knowledge of the sensitivity limits of the instrument, commonly depicted as a graph of the spectral density of the dimensionless strain vs. frequency of the gravitational wave. Previous discussions of the sensitivity have relied on approximations and heuristic arguments about the shape of the transfer function to construct a sensitivity curve. This thesis details the computation of the exact sensitivity curve given a simple set of parameters describing a space-based interferometer.; The second original result presented here is an exploration of how the mass of the graviton (the fundamental quanta of the gravitational field) might be determined from observations of known sources of gravitational radiation with a space-based interferometric observatory. Current experimental limits place an upper bound on the Compton wavelength of the graviton at lg2.8×1012 km, based on analysis of Yukawa violations to Newton's Universal law of gravitation in the solar system. The advent of state-of-the-art space-based gravitational wave interferometers will allow new bounds to be placed on the graviton mass by observing interacting white dwarf binary stars, such as AM CVn (AM Canum Venaticorum). If the graviton is massless, experimental uncertainty will be the limiting factor in computing bounds on the graviton mass. For space-based interferometric detectors, the predicted uncertainties in the observations of AM CVn will place an upper bound on the inverse mass of the graviton of lg1.4×1015 km.
机译:在不久的将来,将建成几个地基和空基重力波观测站。随着观测宇宙的工具的这一迫在眉睫的变化,在描述我们的仪器对重力辐射的基本响应,了解重力辐射的来源以及确定可以从中获知的基本知识方面,还有许多工作要做这些波的探测产生的引力相互作用。此处报告的第一个原始结果是确定星载重力波天文台的灵敏度极限。确定特定的重力观测站是否可以检测到特定的重力辐射源,需要了解仪器的灵敏度极限,通常将其描述为无量纲应变的频谱密度与重力波频率的关系图。以前关于灵敏度的讨论依赖于关于传递函数形状的近似和启发式论点来构造灵敏度曲线。本文给出了精确的灵敏度曲线的计算,给出了一组简单的描述基于空间的干涉仪的参数。此处显示的第二个原始结果是探索如何通过基于天文干涉观测仪的已知引力辐射源的观测来确定引力子的质量(引力场的基本量子)。当前的实验极限在 l g < / f> km,基于对汤川在太阳系中违反牛顿万有引力定律的分析。先进的基于太空的重力波干涉仪的出现将通过观察相互作用的白矮星双星,如AM CVn(AM Canum Venaticorum )。如果引力子无质量,则实验不确定性将是计算引力子质量边界的限制因素。对于天基干涉仪,AM CVn观测值的预测不确定性将在 l g 公里。

著录项

  • 作者

    Larson, Shane L.;

  • 作者单位

    Montana State University.;

  • 授予单位 Montana State University.;
  • 学科 Physics Astronomy and Astrophysics.; Physics Elementary Particles and High Energy.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;高能物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号