首页> 外文学位 >Lithium dendrite growth through solid polymer electrolyte membranes.
【24h】

Lithium dendrite growth through solid polymer electrolyte membranes.

机译:锂树枝状晶体通过固体聚合物电解质膜生长。

获取原文
获取原文并翻译 | 示例

摘要

The next generation of rechargeable batteries must have significantly improved gravimetric and volumetric energy densities while maintaining a long cycle life and a low risk of catastrophic failure. Replacing the conventional graphite anode in a lithium ion battery with lithium foil increases the theoretical energy density of the battery by more than 40%. Furthermore, there is significant interest within the scientific community on new cathode chemistries, like sulfur and air, that presume the use of a lithium metal anode to achieve theoretical energy densities as high as 5217 W˙h/kg. However, lithium metal is highly unstable toward traditional liquid electrolytes like ethylene carbonate and dimethyl carbonate. The solid electrolyte interphase that forms between lithium metal and these liquid electrolytes is brittle which causes a highly irregular current distribution at the anode, resulting in the formation of lithium metal protrusions. Ionic current concentrates at these protrusions leading to the formation of lithium dendrites that propagate through the electrolyte as the battery is charged, causing it to fail by short-circuit. The rapid release of energy during this short-circuit event can result in catastrophic cell failure.;Polymer electrolytes are promising alternatives to traditional liquid electrolytes because they form a stable, elastomeric interface with lithium metal. Additionally, polymer electrolytes are significantly less flammable than their liquid electrolyte counterparts. The prototypical polymer electrolyte is poly(ethylene oxide). Unfortunately, when lithium anodes are used with a poly(ethylene oxide) electrolyte, lithium dendrites still form and cause premature battery failure. Theoretically, an electrolyte with a shear modulus twice that of lithium metal could eliminate the formation of lithium dendrites entirely. While a shear modulus of this magnitude is difficult to achieve with polymer electrolytes, we can greatly enhance the modulus of our electrolytes by covalently bonding the rubbery poly(ethylene oxide) to a glassy polystyrene chain. The block copolymer phase separates into a lamellar morphology yielding co-continuous nanoscale domains of poly(ethylene oxide), for ionic conduction, and polystyrene, for mechanical rigidity. On the macroscale, the electrolyte membrane is a tough free-standing film, while on the nanoscale, ions are transported through the liquid-like poly(ethylene oxide) domains.;Little is known about the formation of lithium dendrites from stiff polymer electrolyte membranes given the experimental challenges associated with imaging lithium metal. The objective of this dissertation is to strengthen our understanding of the influence of the electrolyte modulus on the formation and growth of lithium dendrites from lithium metal anodes. This understanding will help us design electrolytes that have the potential to more fully suppress the formation of dendrites yielding high energy density batteries that operate safely and have a long cycle life.;Synchrotron hard X-ray microtomography was used to non-destructively image the interior of lithium-polymer-lithium symmetric cells cycled to various stages of life. These experiments showed that in the early stages of lithium dendrite development, the bulk of the dendritic structure was inside of the lithium electrode. Furthermore, impurity particles were found at the base of the lithium dendrites. The portion of the lithium dendrite protruding into the electrolyte increased as the cell approached the end of life. This imaging technique allowed for the first glimpse at the portion of lithium dendrites that resides inside of the lithium electrode.;After finding a robust technique to study the formation and growth of lithium dendrites, a series of experiments were performed to elucidate the influence of the electrolyte's modulus on the formation of lithium dendrites. Typically, electrochemical cells using a polystyrene -- block¬ -- poly(ethylene oxide) copolymer electrolyte are operated at 90 °C which is above the melting point of poly(ethylene oxide) and below the glass transition temperature of polystyrene. In these experiments, the formation of dendrites in cells operated at temperatures ranging from 90 °C to 120 °C were compared. The glass transition temperature of polystyrene (107 °C) is included in this range resulting in a large change in electrolyte modulus over a relatively small temperature window. The X-ray microtomography experiments showed that as the polymer electrolyte shifted from a glassy state to a rubbery state, the portion of the lithium dendrite buried inside of the lithium metal electrode decreased. These images coupled with electrochemical characterization and rheological measurements shed light on the factors that influence dendrite growth through electrolytes with viscoelastic mechanical properties. (Abstract shortened by ProQuest.).
机译:下一代可充电电池必须具有显着提高的重量和体积能量密度,同时保持较长的循环寿命和较低的灾难性故障风险。用锂箔代替锂离子电池中的常规石墨阳极,可使电池的理论能量密度提高40%以上。此外,科学界对新的阴极化学,例如硫和空气有极大的兴趣,这些新的阴极化学假定使用锂金属阳极以达到高达5217 W·h / kg的理论能量密度。然而,锂金属对于诸如碳酸亚乙酯和碳酸二甲酯的传统液体电解质是高度不稳定的。在锂金属和这些液体电解质之间形成的固体电解质中间相是脆性的,这导致在阳极处高度不规则的电流分布,导致形成锂金属突起。离子电流集中在这些突起处,导致形成锂树枝状晶体,随着电池充电,锂树枝状晶体会通过电解质传播,导致其因短路而失效。在这种短路事件期间,能量的快速释放会导致灾难性的电池故障。高分子电解质是传统液态电解质的有希望的替代品,因为它们与锂金属形成稳定的弹性界面。此外,聚合物电解质的可燃性明显低于液态电解质。原型聚合物电解质是聚环氧乙烷。不幸的是,当锂阳极与聚环氧乙烷电解质一起使用时,锂枝晶仍会形成并导致电池过早失效。理论上,剪切模量是锂金属的两倍的电解质可以完全消除锂枝晶的形成。尽管使用聚合物电解质很难达到如此大小的剪切模量,但我们可以通过将橡胶状聚环氧乙烷与玻璃状聚苯乙烯链共价键合来大大提高电解质的模量。嵌段共聚物相分离成层状形态,从而产生了用于离子传导的聚环氧乙烷和用于机械刚度的聚苯乙烯的连续纳米级域。在宏观上,电解质膜是一种坚韧的自支撑膜,而在纳米尺度上,离子则通过液体状的聚环氧乙烷结构域传输。关于从刚性聚合物电解质膜形成锂枝晶的知识鲜为人知考虑到与锂金属成像相关的实验挑战。本文的目的是加强我们对电解质模量对锂金属阳极锂枝晶形成和生长的影响的理解。这种理解将帮助我们设计具有更充分抑制树枝状晶体形成的潜力的电解质,从而生产出高能量密度的电池,从而安全地运行并具有较长的循环寿命。;同步加速器硬X射线显微照相术用于对室内进行无损成像锂聚合物锂对称电池的寿命周期不断变化。这些实验表明,在锂树枝状晶体发展的早期,大部分的树枝状结构位于锂电极内部。此外,在锂树枝状晶体的底部发现了杂质颗粒。随着电池接近使用寿命,锂枝晶突出到电解质中的部分增加。这项成像技术使我们可以一眼看到位于锂电极内部的锂枝晶部分。在找到了一种可靠的技术来研究锂枝晶的形成和生长之后,进行了一系列实验来阐明锂枝晶的影响。电解质的模量对锂枝晶形成的影响。通常,使用聚苯乙烯-嵌段-聚(环氧乙烷)共聚物电解质的电化学电池在高于聚(环氧乙烷)的熔点且低于聚苯乙烯的玻璃化转变温度的90℃下操作。在这些实验中,比较了在温度范围为90°C至120°C的细胞中树突的形成。聚苯乙烯的玻璃化转变温度(107°C)包含在该范围内,从而导致在相对较小的温度范围内电解质模量发生较大变化。 X射线显微照相实验表明,随着聚合物电解质从玻璃态转变为橡胶态,埋在锂金属电极内部的锂枝晶部分减少。这些图像与电化学特性和流变学测量相结合,揭示了影响通过具有粘弹性机械特性的电解质影响枝晶生长的因素。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Harry, Katherine Joann.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Materials science.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号