首页> 外文学位 >An experimental investigation of the effects of spiral angle on the evaporation heat transfer coefficients in microfin tubes with visualization technique
【24h】

An experimental investigation of the effects of spiral angle on the evaporation heat transfer coefficients in microfin tubes with visualization technique

机译:可视化技术研究螺旋角对微翅片管内蒸发传热系数的影响

获取原文
获取原文并翻译 | 示例

摘要

A smooth tube and five microfin tubes were tested, and evaporation heat transfer coefficients were measured and compared for mass fluxes, 50, 100 and 200 kg/m2 s, and heat fluxes, 5, 10 and 20 kW/m 2, with Refrigerant 134a as a working fluid. The evaporation heat transfer coefficients at quality 0.5 were compared among the smooth and five microfin tubes with spiral angles 6, 12, 18, 25 and 44 degrees. The effect of the spiral angle on the heat transfer coefficients was examined. It was found that the optimal spiral angle where the maximum heat transfer coefficient occurs, mainly depends on mass flux. The optimal spiral angle was 18 degrees for G=50 kg/m2 s, and 6 degrees for G=100 and 200 kg/m 2 s.;A borescope was used to visualize the flow on the inside wall of test tubes. The purpose was to find out the effect of the grooves on the liquid flow in microfin tubes and to explain the mechanism of heat transfer enhancement. Temperatures on the tube wall were measured at the same axial location as the imaging sensor of the borescope, and were related to the behavior of the liquid flow on the inside wall of the tubes. The liquid flow in the grooves on the wall was found to be the most important factor in enhancing heat transfer coefficients. The liquid flowed upward along the grooves and covered the upper inside wall of the microfin tubes at G=50 kg/m2 s. When heat flux increases, the liquid flow was found at a higher position. Both liquid viscosity and surface tension decrease, when temperature increases. Thus, the lower viscosity at higher heat flux facilitated the upward motion of the liquid flow in the grooves, so that the momentum force as well as the capillary effect was found to push the liquid along the grooves.*.;*A CD is included with dissertation containing video clips in avi format which can be viewed with media player.
机译:测试了光滑管和五个微翅片管,并测量了蒸发传热系数,并与制冷剂134a比较了质量通量50、100和200 kg / m2 s,热通量5、10和20 kW / m 2。作为工作流体。比较了光滑和五个螺旋角分别为6、12、18、25和44度的微翅片管的质量为0.5时的蒸发传热系数。研究了螺旋角对传热系数的影响。发现最大传热系数出现的最佳螺旋角主要取决于质量通量。最佳螺旋角在G = 50 kg / m2 s时为18度,在G = 100和200 kg / m 2 s时为6度。使用管道镜可视化试管内壁的流动。目的是找出沟槽对微翅片管中液体流动的影响,并说明传热增强的机理。在与管道镜的成像传感器相同的轴向位置处测量管壁上的温度,并且与管内壁上的液体流动行为有关。发现壁上的凹槽中的液体流动是增加传热系数的最重要因素。液体沿着凹槽向上流动,并以G = 50 kg / m2 s覆盖微翅片管的上内壁。当热通量增加时,发现液体流动在较高的位置。当温度升高时,液体粘度和表面张力都会降低。因此,在较高的热通量下较低的粘度促进了凹槽中液体的向上运动,从而发现了动量力以及毛细作用将液体沿着凹槽推开。*。**包括CD包含包含avi格式视频剪辑的论文,可以使用媒体播放器进行查看。

著录项

  • 作者

    Oh, Se-Yoon.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Mechanical engineering.;Plasma physics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号