首页> 外文学位 >Solid-fluid phase equilibrium in chain molecules.
【24h】

Solid-fluid phase equilibrium in chain molecules.

机译:链分子中的固液相平衡。

获取原文
获取原文并翻译 | 示例

摘要

We present results for the solid-fluid phase equilibrium for molecular models of chain molecules using Monte Carlo computer simulation and cell theory. We were concerned primarily with the role of molecular shape and flexibility on the solid-fluid phase equilibrium. We have considered models with different intramolecular potentials to examine the effect this has on the phase diagram. Extensive calculations of the fluid and solid phase equations of state have been made and solid phase free energies have also been determined. Our results for the fluid properties are compared with various theoretical equations of state which have been proposed for these systems. A method for calculating the solid phase free energy of chain molecules has been developed based on finding a reversible path to an Einstein crystal. For models of freely jointed chains of tangent hard spheres, the dependence of the solid phase thermodynamics upon the chain conformation has been studied and solid-fluid phase diagrams for chains with lengths ranging from three through eight atoms have been determined. In the case of models of flexible united atom chains, solid-fluid phase diagrams for chains with lengths ranging from four to eight atoms have been determined for three different torsional potentials. The data for flexible united atom chain models have been used as reference systems in a generalized van der Waals or mean field calculation of the n-alkane phase diagrams. This theory reproduces trends in the triple point temperature seen in experimental data. These trends are interpreted in terms of the changes in the close packed densities of the solids with chain length and the effect of the torsional energy on the relative stability of the fluid and solid phases. A cell theory was developed that was applicable to the flexible hard sphere site united atom model. The theory was in good agreement with the Monte Carlo simulations. Finally the phase diagram of a flexible united atom model mixture was determined. The model phase diagram showed that a solid-solid mixture phase coexistence can occur in these systems. However the method for calculating 6G6x1 P,T a required quantity was not accurate enough to definitively calculate the phase diagram. The data showed clear overall trends that the value of 6G6x1 P,T at constant pressure decreased with increasing mole fraction and that as the pressure increased the slope of 6G6x1 P,T versus mole fraction increased. These trends were present for the two different system sizes considered.
机译:我们提出使用蒙特卡洛计算机模拟和细胞理论的链分子的分子模型的固液相平衡的结果。我们主要关注的是分子形状和柔韧性在固液相平衡中的作用。我们考虑了具有不同分子内电势的模型,以检查其对相图的影响。进行了流体和固相状态方程的广泛计算,还确定了固相自由能。我们将流体特性的结果与针对这些系统提出的各种状态理论方程进行了比较。基于寻找到爱因斯坦晶体的可逆路径,已经开发了一种计算链分子的固相自由能的方法。对于切线硬球自由连接链的模型,已经研究了固相热力学对链构象的依赖性,并确定了长度为三到八个原子的链的固相图。对于挠性联合原子链的模型,对于三种不同的扭转势,已确定了长度范围为4至8个原子的链的固液相图。灵活的统一原子链模型的数据已在广义范德华或正构烷烃相图平均场计算中用作参考系统。该理论再现了在实验数据中看到的三相温度的趋势。这些趋势是根据固体的紧密堆积密度随链长的变化以及扭转能对液相和固相相对稳定性的影响来解释的。提出了一种细胞理论,该理论适用于柔性硬球部位联合原子模型。该理论与蒙特卡洛模拟非常吻合。最后,确定了柔性联合原子模型混合物的相图。模型相图表明,在这些系统中可以发生固-固混合物相共存。但是,计算所需数量的6G6x1 P,T的方法不够精确,无法确定相图。数据显示出明显的总体趋势,即恒定压力下6G6x1 P,T的值随摩尔分数的增加而降低,并且随着压力的增加6G6x1 P,T相对于摩尔分数的斜率增加。这些趋势在所考虑的两个不同系统大小中都存在。

著录项

  • 作者

    Malanoski, Anthony Peter.;

  • 作者单位

    University of Massachusetts Amherst.;

  • 授予单位 University of Massachusetts Amherst.;
  • 学科 Chemical engineering.;Molecular physics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号