首页> 外文学位 >Cholinergic neuromodulation in hippocampal function and disease: From single-cell biophysics to network simulations.
【24h】

Cholinergic neuromodulation in hippocampal function and disease: From single-cell biophysics to network simulations.

机译:海马功能和疾病的胆碱能神经调节:从单细胞生物物理学到网络模拟。

获取原文
获取原文并翻译 | 示例

摘要

A fundamental mystery in neuroscience is how cellular components endow a particular anatomical region with a specific function. In the hippocampus, this function appears to be episodic memory. Here we examine how networks of pyramidal cells in the CA3 region, when regulated by cholinergic neuromodulation, theta- and gamma-frequency oscillations, and different classes of inhibitory interneurons can support memory function analogous to that of artificial attractor neural networks. This is a computational investigation of highly detailed, biophysical-level models of pyramidal cells and interneurons with a wide variety of intrinsic ion channels (Na, CaL, CaN, CaT, KDR, KM, KA, KAHP and KC ), connected in networks by AMPA-, NMDA- and GABAA-mediated synapses consistent with specific anatomy, physiology and pharmacology of CA3. At the level of single cells, the major findings are that the modulation of ion channels by increasing concentrations of acetylcholine (ACh) promotes a striking transition from bursting to regular spiking, increases the amplitude and speed of backpropagating action potentials, and decreases intracellular free calcium in the dendritic arbor. At the network level, we find that ACh regulates the frequency of the gamma oscillation in a concentration-dependent manner while its ability to alter the balance of AMPA- and NMDA-mediated synaptic currents can tune the network for optimal memory performance. The CA3 model is capable of robust autoassociative memory function and suggests putative roles for cholinergic neuromodulation, oscillations and interneurons in memory function. Cholinergic input is proposed to regulate the behavioral state of the network (bursting vs. spiking, learning vs. recall), the theta oscillation clocks inputs from entorhinal cortex, the gamma oscillation maintains rapid and temporally-precise coding of information, and different classes of interneurons generate gamma-band oscillations and balance the excitation of the pyramidal cell recurrent collaterals. Finally, simulations of cholinergic denervation and/or modulation by the amyloid beta-peptide (Abeta) have implications for the cognitive decline that accompanies Alzheimer's disease. Specifically, the observed slowing of the gamma oscillation is a novel and experimentally testable effect that his a significant impact on memory performance; the modulation of potassium channels by Abeta prevents the transition from a regular spiking to a bursting regime interfering with the switch between learning and recall.
机译:神经科学的一个基本谜团是细胞成分如何赋予特定的解剖区域特定的功能。在海马中,此功能似乎是情景记忆。在这里,我们研究了胆碱能神经调节,θ和γ频率振荡以及不同种类的抑制性中间神经元对CA3区锥体细胞网络的调控,其功能类似于人工吸引神经网络。这是对具有各种固有离子通道(Na,CaL,CaN,CaT,KDR,KM,KA,KAHP和KC)的锥体细胞和中间神经元的高度详细的生物物理水平模型的计算研究,该模型通过网络连接AMPA,NMDA和GABAA介导的突触与CA3的特定解剖结构,生理学和药理学一致。在单细胞水平上,主要发现是通过增加乙酰胆碱(ACh)的浓度来调节离子通道,从而促进了从爆发到规则峰值的惊人转变,增加了反向传播动作电位的幅度和速度,并降低了细胞内游离钙在树状乔木中。在网络级别,我们发现ACh以浓度依赖的方式调节伽马振荡的频率,而其改变AMPA和NMDA介导的突触电流平衡的能力可以调节网络以获得最佳的存储性能。 CA3模型具有强大的自缔合记忆功能,并暗示了胆碱能神经调节,振荡和中间神经元在记忆功能中的假定作用。提出了胆碱能输入来调节网络的行为状态(爆发,尖峰,学习与回忆),θ振荡为内嗅皮层输入时钟,γ振荡保持信息的快速和时间精确编码,以及不同类别的中间神经元产生伽马能带振荡,并平衡锥体细胞循环侧支的激发。最后,通过淀粉样蛋白β肽(Abeta)对胆碱能去神经和/或调节的模拟对伴随阿尔茨海默氏病的认知能力下降具有影响。具体而言,观察到的伽马振荡减慢是一种新颖的且可通过实验测试的效果,对记忆性能产生了显着影响。 Abeta对钾离子通道的调节作用可防止从正常的峰值转变为干扰学习和记忆之间切换的爆发状态。

著录项

  • 作者

    Menschik, Elliot Dov.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Biology Anatomy.; Biology Neuroscience.; Biology Animal Physiology.; Biophysics General.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物形态学;神经科学;生理学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号