首页> 外文学位 >Planar velocity measurements in compressible mixing layers.
【24h】

Planar velocity measurements in compressible mixing layers.

机译:可压缩混合层中的平面速度测量。

获取原文
获取原文并翻译 | 示例

摘要

The efficiency of high-Mach number airbreathing propulsion devices is critically dependent upon the mixing of gases in turbulent shear flows. However, compressibility is known to suppress the growth rates of these mixing layers, posing a problem of both practical and scientific interest. In the present study, particle image velocimetry (PIV) is used to obtain planar, two-component velocity fields for Planar gaseous shear layers at convective Mach numbers Mc of 0.25, 0.63, and 0.76. The experiments are performed in a large-scale blowdown wind tunnel, with high-speed freestream Mach numbers up to 2.25 and shear-layer Reynolds numbers up to 106 . The instantaneous data are analyzed to produce maps of derived quantities such as vorticity, and ensemble averaged to provide turbulence statistics. Specific issues relating to the application of PIV to supersonic flows are addressed. In addition to the fluid-velocity measurements, we present double-pulsed scalar visualizations, permitting inference of the convective velocity of the large-scale structures, and examine the interaction of a weak wave with the mixing layer.;The principal change associated with compressibility is seen to be the development of multiple high-gradient regions in the instantaneous velocity field, disrupting the spanwise-coherent 'roller' structure usually associated with incompressible layers. As a result, the vorticity peaks reside in multiple thin sheets, segregated in the transverse direction. This suggests a decrease in cross-stream communication and a disconnection of the entrainment processes at the two interfaces. In the compressible case, steep-gradient regions in the instantaneous velocity field often correspond closely with the local sonic line, suggesting a sensitivity to lab-frame disturbances; this could in turn explain the effectiveness of sub-boundary layer mixing enhancement strategies in this flow. Large-ensemble statistics bear out the observation from previous single-point measurements that transverse turbulence intensity and Reynolds stress are suppressed as compressibility increases. The principal features of the wave-layer interaction are the imposition of compressibility effects even at low Mc, and more marked alteration of turbulence statistics. Structure convective velocities measured using the double-pulsed scalar images are lower than those predicted from isentropic mixing-layer theory, to a degree proportional to compressibility.
机译:高马赫数空气推进装置的效率主要取决于湍流剪切流中气体的混合。然而,已知可压缩性抑制了这些混合层的生长速率,这带来了实用和科学意义的问题。在本研究中,使用粒子图像测速(PIV)来获得平面气态剪切层在对流马赫数Mc为0.25、0.63和0.76时的平面两分量速度场。实验在大型排污风洞中进行,高速自由流马赫数高达2.25,剪切层雷诺数高达106。分析瞬时数据以生成派生量(例如涡度)的图,并对集合进行平均以提供湍流统计。解决了与将PIV应用于超音速流有关的特定问题。除了测量流速外,我们还提供了双脉冲标量可视化效果,可以推断大型结构的对流速度,并检查弱波与混合层的相互作用。可以看出,这是瞬时速度场中多个高梯度区域的发展,破坏了通常与不可压缩层有关的展向相干“辊”结构。结果,涡度峰位于横向分离的多个薄片中。这表明跨流通信的减少和两个接口处的夹带过程的断开。在可压缩的情况下,瞬时速度场中的陡峭梯度区域通常与局部声波线紧密对应,表明对实验室框架扰动敏感。这反过来可以解释此流程中次边界层混合增强策略的有效性。大数据统计表明,以前的单点测量结果表明,随着可压缩性的增加,横向湍流强度和雷诺应力会受到抑制。波层相互作用的主要特征是即使在低Mc时也施加了可压缩性,并且湍流统计数据的变化也更加明显。使用双脉冲标量图像测得的结构对流速度低于等熵混合层理论所预测的对流速度,其程度与可压缩性成比例。

著录项

  • 作者

    Urban, William David.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Mechanical.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号