首页> 外文学位 >Theoretical stress analyses for rock spheres and cylinders under the point load strength test.
【24h】

Theoretical stress analyses for rock spheres and cylinders under the point load strength test.

机译:点载荷强度试验下岩石球体和圆柱体的理论应力分析。

获取原文
获取原文并翻译 | 示例

摘要

The Point Load Strength Test (PLST) is an extremely convenient and useful method for rock classification and strength estimation. Although the PLST has been extensively studied by experimental approach, there are relatively few theoretical studies for the PLST. Analytic studies for the PLST include analyses of isotropic spheres under the diametral PLST by Hiramatsu and Oka (1966), finite cylinders under the axial PLST by Wijk (1978) and by Peng (1976), and finite cylinders under the diametral PLST by Wijk (1980) and Chau (1998a).; However, the exact stress field within a cylinder under the axial or diametral PLST has not been solved analytically. The only analytic results are the approximate solutions by Wijk (1978, 1980), in which the interaction between the indentors and the surfaces of the cylinder was idealized by two point forces. The finite element method has been applied to the axial PLST (e.g. Peng, 1976), but the contact problem between the indentors and the end surfaces was not considered either. The analytic solution by Chau (1998a) is for finite isotropic cylinders with zero shear displacement on the two end surfaces under the diametral PLST. Moreover, all of these analyses are restricted to considering rock as isotropic solids, there is no analytic solution for anisotropic rocks under the PLST.; Therefore, this dissertation presents a series of exact analytic solutions for anisotropic spheres and finite isotropic cylinders under the PLST. More specifically, the dissertation presents: (I) an exact analytic solution for spherically isotropic spheres under the diametral PLST; (II) an exact analytic solution for finite isotropic cylinders under the axial PLST; (III) an exact analytic solution for finite isotropic cylinders under the diametral PLST; and (IV) a general analytic solution for finite isotropic cylinders under arbitrary surface load. In addition, a series of the PLST experiments have also been done on plaster, a kind of artificial rock-like material, to verify the theoretical solutions.; The method of solution for spheres uses the displacement potential approach together with the Fourier-Legendre expansion for the boundary loads. The solution reduces to the classical solution by Hiramatsu and Oka (1966) in isotropic case. Numerical results show that the maximum tensile stress along the axis of loading is very sensitive to the anisotropy in Young's modulus, Poisson's ratio and shear modulus, while the pattern of the stress distribution is relatively insensitive to anisotropy of rocks. The method for finite isotropic cylinders under the axial or diametral PLST expresses displacement functions in terms of series of the Bessel and modified Bessel functions; and the contact problem between the surfaces of the cylinder and the indentors, through which the point loads are applied, is considered. Numerical results show that the tensile stress distribution along the axis of loading within isotropic cylinders, either under the axial or diametral PLST, similar to that within isotropic spheres under PLST, is not uniform, tensile stress concentrations are developed near the point loads, the maximum tensile stress increases with the decrease of Poisson's ratio and the size of loading area. The theoretical prediction for the size and shape effects of the specimen on the PLST agrees well with experimental results. More importantly, if the sizes of the specimens are comparable (ISRM, 1985), the tensile stress distributions along the axis of loading in a sphere, in a cylinder under the axial or diametral PLST, have the similar pattern. This conclusion indicates that the PLST is insensitive to the exact shape of the specimen, thus we provide the first theoretical basis for irregular lumps under the PLST.; In addition, by generalizing the method of solution for axisymmetric; problem of the axial PLST and for non-axisymmetric problem of the diametral PLST, a new analytic framework for analyzing stresses for finite isotropic sol
机译:点载荷强度测试(PLST)是一种非常方便且有用的岩石分类和强度估算方法。尽管已经通过实验方法对PLST进行了广泛的研究,但是关于PLST的理论研究相对较少。 PLST的分析研究包括Hiramatsu和Oka(1966)在径向PLST下的各向同性球体,Wijk(1978)和Peng(1976)在轴向PLST下的有限圆柱体以及Wijk(在径向PLST下的有限圆柱体)( 1980)和Chau(1998a)。但是,轴向或径向PLST下圆柱体内的确切应力场尚未得到解析解决。唯一的分析结果是Wijk(1978,1980)的近似解,其中压头和圆柱体表面之间的相互作用通过两点力而理想化了。有限元方法已经应用于轴向PLST(例如Peng,1976),但是也没有考虑压头和端面之间的接触问题。 Chau(1998a)的解析解决方案是在直径PLST下的两个端面上具有零剪切位移的有限各向同性圆柱体。此外,所有这些分析仅限于将岩石视为各向同性固体,在PLST下没有各向异性岩石的解析解。因此,本文针对PLST下的各向异性球体和各向同性圆柱提供了一系列精确的解析解。具体而言,本文提出:(I)直径PLST下球面各向同性球的精确解析解; (II)轴向PLST下有限各向同性圆柱的精确解析解; (III)径向PLST下有限各向同性圆柱的精确解析解; (Ⅳ)在任意表面载荷下有限各向同性圆柱体的一般解析解。此外,还对石膏(一种人造岩石状材料)进行了一系列PLST实验,以验证理论解。球体的求解方法使用位移势方法以及边界载荷的傅立叶-勒格朗德展开。在各向同性情况下,该解简化为Hiramatsu和Oka(1966)的经典解。数值结果表明,沿加载轴的最大拉应力对杨氏模量,泊松比和剪切模量的各向异性非常敏感,而应力分布的模式对岩石的各向异性相对不敏感。轴向或径向PLST下有限各向同性圆柱体的方法用Bessel级数和改进的Bessel函数表示位移函数。并考虑了圆柱体表面与压头之间的接触问题,并通过点接触施加了压力。数值结果表明,在轴向或径向PLST下,各向同性圆柱体在载荷轴上的拉伸应力分布与PLST下在各向同性球体内的拉伸应力分布不均匀,在点载荷附近出现拉伸应力集中,最大随着泊松比和载荷面积的减小,拉应力增大。样品对PLST的尺寸和形状影响的理论预测与实验结果非常吻合。更重要的是,如果试件的尺寸是可比较的(ISRM,1985),则在球形或轴向PLST下方的圆柱体中,沿载荷轴的拉伸应力分布具有相似的模式。这一结论表明,PLST对标本的确切形状不敏感,因此我们为PLST下的不规则团块提供了第一个理论基础。另外,通过推广求解轴对称问题的方法;轴向PLST问题和径向PLST的非轴对称问题,一种用于分析各向同性溶胶应力的新解析框架

著录项

  • 作者

    Wei, Xuexia.;

  • 作者单位

    Hong Kong Polytechnic (People's Republic of China).;

  • 授予单位 Hong Kong Polytechnic (People's Republic of China).;
  • 学科 Engineering Civil.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号