首页> 外文学位 >Statistical kinetics of processive molecular motors.
【24h】

Statistical kinetics of processive molecular motors.

机译:统计分子动力学动力学。

获取原文
获取原文并翻译 | 示例

摘要

We describe new theoretical and experimental tools for studying biological motor proteins at the single molecule scale. These tools enable measurements of molecular fuel economies, thereby providing insight into the pathways for conversion of biochemical energy into mechanical work.; Kinesin is an ATP-dependent motor that moves processively along microtubules in discrete steps of 8 nm. How many molecules of ATP are hydrolysed per step? To determine this coupling ratio, we develop a fluctuation analysis, which relates the variance in records of mechanical displacement to the number of rate-limiting biochemical transitions in the engine cycle. Using fluctuation analysis and optical trapping interferometry, we determine that near zero load, single molecules of kinesin hydrolyse one ATP nucleotide per 8-nm step.; To study kinesin behavior under load, we use a molecular force clamp, capable of maintaining constant loads on single kinesin motors moving processively. Analysis of records of motion under variable ATP concentrations and loads reveals that kinesin is a ‘tightly-coupled’ motor, maintaining the 1:1 coupling ratio up to loads of 5 pN. Moreover, a Michaelis-Menten analysis of velocity shows that the kinesin cycle contains at least two load-dependent transitions. The rate of one of these transitions affects ATP affinity, while the other does not. Therefore, the kinesin stall force must depend on the ATP concentration, as is demonstrated experimentally. These findings rule out existing theoretical models of kinesin motility.; We develop a simple theoretical formalism describing a tightly-coupled mechanism for movement. This ‘energy-landscape’ formalism quantitatively accounts for motile properties of RNA polymerase (RNAP), the enzyme that transcribes DNA into RNA. The shapes of RNAP force-velocity curves indicate that biochemical steps limiting transcription rates at low loads do not generate movement. Modeling suggests that high loads may halt RNAP by promoting a structural change which moves all or part of the enzyme backwards along the DNA through a distance of 5–10 base pairs. Using the energy landscape formalism, we also propose a model for kinesin. The model incorporates both the ATP-dependent and the ATP-independent mechanical transitions in the motor cycle and explains experimental measurements of kinesin velocity.
机译:我们描述了新的理论和实验工具,用于研究单分子水平的生物运动蛋白。这些工具能够测量分子燃料的经济性,从而深入了解将生物化学能转化为机械功的途径。驱动蛋白是一种依赖于ATP的电动机,它以8 nm的离散步长沿着微管进行性运动。每步水解多少个ATP分子?为了确定这种耦合比,我们开发了一种波动分析,该波动分析将机械位移记录中的差异与发动机循环中限速生化跃迁的数量相关联。使用波动分析和光阱干涉法,我们确定接近零负荷时,驱动蛋白的单分子每8 nm步水解一个ATP核苷酸。为了研究负载下的驱动蛋白行为,我们使用了一种分子力钳,能够在单个驱动蛋白的过程中保持恒定的负载。在可变的ATP浓度和负载下的运动记录分析表明,驱动蛋白是一种“紧密耦合”的电机,在 5负载下均保持1:1的耦合比。 pN。此外,Michaelis-Menten的速度分析表明,驱动蛋白循环包含至少两个依赖于负荷的跃迁。这些转换之一的速率会影响ATP亲和力,而另一个则不会。因此,如实验所示,驱动蛋白的失速力必须取决于ATP的浓度。这些发现排除了现有的驱动蛋白运动理论模型。我们开发了一种简单的理论形式主义,描述了运动的紧密耦合机制。这种“能量景观”形式主义定量地说明了RNA聚合酶(RNAP)的运动特性,该酶将DNA转录为RNA。 RNAP力-速度曲线的形状表明,在低负荷下限制转录速率的生化步骤不会产生运动。建模表明,高负荷可能通过促进结构改变而终止RNAP,该改变将使全部或部分酶沿DNA向后移动5-10个碱基对。使用能源格局形式主义,我们还提出了一种驱动蛋白模型。该模型在电单车中结合了依赖于ATP和不依赖于ATP的机械转换,并解释了驱动蛋白速度的实验测量值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号