首页> 外文学位 >Phase formation and microstructure in reactively sputter-deposited zirconia and yttria-stabilized zirconia coatings.
【24h】

Phase formation and microstructure in reactively sputter-deposited zirconia and yttria-stabilized zirconia coatings.

机译:反应溅射沉积的氧化锆和氧化钇稳定的氧化锆涂层的相形成和微观结构。

获取原文
获取原文并翻译 | 示例

摘要

Knowledge of the phase formation and stability in zirconia (ZrO 2) and yttria-stabilized zirconia (YSZ) coatings is fundamentally important for improving the properties and performance of these materials for engineering applications. This investigation demonstrated that reactive bias sputter deposition can modify the crystal structure and phase stabilities in zirconia and yttria stabilized zirconia coatings.; The research described in this dissertation developed fundamental microstructure-processing relationships for zirconia-yttria (0, 2, and 4.5 mol% Y2O 3) coatings produced by reactive sputtering deposition. Relationships have been developed between the microstructure (crystal structure, texture, phase formation, thermal stability, and growth morphology) and major processing variables (substrate bias, Y2O3 content, and post-deposition annealing). This research used analytical techniques including room/high temperature X-ray diffraction (XRD), transmission electron microscopy (TEM), and high resolution electron microscopy (HREM).; It was found that phase formation and crystallographic texture in ZrO 2 coating were each strongly dependent on the level of applied negative substrate bias and the amount of Y2O3 alloying. The results showed that the crystal structure of ZrO2 coating changed from random equilibrium monoclinic to random metastable tetragonal and finally to strong (111) oriented tetragonal crystalline when the substrate bias was varied from 0 to 850 V. Furthermore, a highly (111) preferred orientation of tetragonal and cubic zirconia was found in 2 and 4.5 mol% Y2O 3 coatings, respectively, and each of these coatings was grown by reactive sputtering with an applied substrate bias of --400V.; XRD and TEM analyses revealed that biased sputtering could effectively decrease crystallite size in the as-deposited coatings, which resulted in room temperature stabilization of the metastable tetragonal phase. In-situ high temperature XRD showed that the kinetics of tetragonal-to-monoclinic phase transformation was strongly dependent on the tetragonal grain size, which was a function of substrate bias and post-deposition annealing. The transformation fraction of metastable tetragonal phase, the desired phase for transformation toughening, can be controlled by a combination of the substrate bias and annealing temperature.
机译:了解氧化锆(ZrO 2)和氧化钇稳定的氧化锆(YSZ)涂层的相形成和稳定性对于改善这些材料在工程应用中的性能和性能至关重要。这项研究表明,反应性偏压溅射沉积可以改变氧化锆和氧化钇稳定的氧化锆涂层的晶体结构和相稳定性。本文介绍的研究为反应溅射沉积制备的氧化锆-氧化钇(0、2和4.5 mol%Y2O 3)涂层建立了基本的微观结构与加工的关系。已经在微观结构(晶体结构,织构,相形成,热稳定性和生长形态)与主要加工变量(衬底偏置,Y2O3含量和沉积后退火)之间建立了关系。这项研究使用的分析技术包括室温/高温X射线衍射(XRD),透射电子显微镜(TEM)和高分辨率电子显微镜(HREM)。发现ZrO 2涂层中的相形成和晶体织构均强烈取决于所施加的负基体偏压的水平和Y2O3合金化的量。结果表明,当衬底偏压在0至850 V之间变化时,ZrO2涂层的晶体结构从无规平衡单斜晶变为无规亚稳四方晶,最终变为强(111)取向四方晶。此外,高(111)择优取向在2和4.5mol%的Y 2 O 3涂层中分别发现了四方和立方氧化锆,并且这些涂层中的每一个都是通过反应溅射在施加-400V的衬底偏压下生长的。 XRD和TEM分析表明,偏压溅射可以有效降低沉积态涂层的微晶尺寸,从而在室温下稳定亚稳四方相。原位高温XRD显示,四方晶向单斜晶相转变的动力学很大程度上取决于四方晶的晶粒尺寸,而四方晶的晶粒尺寸则是衬底偏压和沉积后退火的函数。亚稳态四方相的相变分数,即相变韧化所需的相,可以通过衬底偏压和退火温度的组合来控制。

著录项

  • 作者

    Ji, ZhiQiang.;

  • 作者单位

    The University of Alabama at Birmingham.;

  • 授予单位 The University of Alabama at Birmingham.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号