首页> 外文学位 >High-frequency acoustic remote sensing of seafloor characteristics.
【24h】

High-frequency acoustic remote sensing of seafloor characteristics.

机译:高频声学海底特征遥感。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation describes the development of a sediment classification method which compares bottom returns measured by a calibrated, moderate beam width (10°–20°), vertically oriented (0°–15°) monostatic sonar, with an echo envelope model based on high frequency (10–100 kHz) incoherent backscatter theory and sediment properties such as: mean grain size, strength and exponent of an interface roughness spectrum exhibiting power law statistics, and volume scattering coefficient.; An average echo envelope matching procedure is described where: first, sediment type (sand or fines) is established by iterating on the reflection coefficient to match the peak echo amplitude and to establish a general fit with generic values for the remaining geoacoustic parameters; then, a three parameter global optimization is performed using a combination of simulated annealing and downhill simplex searches over the allowable range of interface roughness spectral strength, sediment volume scattering coefficient, and a constrained range of reflection and bottom absorption coefficients correlated with mean grain size. Bottom echo envelopes collected at 33 kHz and 93 kHz, over substrates ranging from sand to clay, yield solutions for grain size and geoacoustic properties which are consistent with ground truth measurements.; Analyses of the estimated geoacoustic parameters for different combinations of sediment type, frequency, and transducer orientation, reveal that moderate frequencies (33 kHz) and orientations normal with the interface are best suited for this application. The ability to distinguish sands from fine-grain sediments is demonstrated based on acoustic estimation of mean grain size alone. The creation of feature vectors from estimates of mean grain size and interface roughness spectral strength shows promise for intraclass separation of silt and clay.; Estimates of spectral strength for sand substrates are relatively immune to measured echo variability, whereas estimates of mean grain size are moderately affected. The opposite trend is observed for fine-grain substrates, with spectral strength estimates varying significantly. Correlation of mean grain size and spectral strength is observed in the estimated solutions, and is especially large for sand substrates. This trend is consistent with what is observed in nature, where coarser sediments exhibit more energy in the roughness spectrum than fine-grain sediments.
机译:本文描述了一种沉积物分类方法的发展,该方法将通过校准的中等波束宽度(10°–20°),垂直定向(0°–15°)单基地声纳和基于高回波包络模型的底部回波进行比较频率(10–100 kHz)的非相干反向散射理论和沉积物特性,例如:平均晶粒尺寸,强度和界面粗糙度谱的指数(显示幂律统计)以及体积散射系数。描述了平均回波包络匹配程序,其中:首先,通过迭代反射系数来建立沉积物类型(沙子或细粉),以匹配峰值回波振幅,并为其余的地声参数建立通用的通用拟合;然后,通过模拟退火和下坡单纯形搜索的组合,在界面粗糙度光谱强度,沉积物体积散射系数的允许范围以及与平均晶粒尺寸相关的反射和底部吸收系数的约束范围内,进行三参数全局优化。在从沙子到粘土的基底上以33 kHz和93 kHz收集的底部回波包络,产生了与地面真实测量值一致的晶粒尺寸和地球声学特性的解决方案。对沉积物类型,频率和换能器方位的不同组合的估计地声参数的分析表明,中等频率(33 kHz)和界面法线的方位最适合此应用。仅基于平均粒度的声学估计就证明了区分细粒沉积物和沙子的能力。从平均晶粒度和界面粗糙度光谱强度的估计值创建特征向量,显示出粉砂和黏土类内分离的前景。沙质底物的光谱强度估计值相对不受测得的回波变异性的影响,而平均粒度的估计值则受到中等程度的影响。对于细颗粒基材,观察到相反的趋势,光谱强度估计值变化很大。在估计的溶液中观察到平均晶粒尺寸和光谱强度的相关性,对于砂质底物尤其如此。这种趋势与自然界中观察到的趋势一致,在自然界中,较粗糙的沉积物在粗糙度谱中显示出比细颗粒沉积物更多的能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号