首页> 外文学位 >Gaussian Process-Based Models for Clinical Time Series in Healthcare
【24h】

Gaussian Process-Based Models for Clinical Time Series in Healthcare

机译:基于高斯过程的医疗时间序列模型

获取原文
获取原文并翻译 | 示例

摘要

Clinical prediction models offer the ability to help physicians make better data-driven decisions that can improve patient outcomes. Given the wealth of data available with the widespread adoption of electronic health records, more flexible statistical models are required that can account for the messiness and complexity of this data. In this dissertation we focus on developing models for clinical time series, as most data within healthcare is collected longitudinally and it is important to take this structure into account. Models built off of Gaussian processes are natural in this setting of irregularly sampled, noisy time series with many missing values. In addition, they have the added benefit of accounting for and quantifying uncertainty, which can be extremely useful in medical decision making. In this dissertation, we develop new Gaussian process-based models for medical time series along with associated algorithms for efficient inference on large-scale electronic health records data. We apply these models to several real healthcare applications, using local data obtained from the Duke University healthcare system.;In Chapter 1 we give a brief overview of clinical prediction models, electronic health records, and Gaussian processes. In Chapter 2, we develop several Gaussian process models for clinical time series in the context of chronic kidney disease management. We show how our proposed joint model for longitudinal and time-to-event data and model for multivariate time series can make accurate predictions about a patient's future disease trajectory. In Chapter 3, we combine multi-output Gaussian processes with a downstream black-box deep recurrent neural network model from deep learning. We apply this modeling framework to clinical time series to improve early detection of sepsis among patients in the hospital, and show that the Gaussian process preprocessing layer both allows for uncertainty quantification and acts as a form of data augmentation to reduce overfitting. In Chapter 4, we again use multi-output Gaussian processes as a preprocessing layer in model-free deep reinforcement learning. Here the goal is to learn optimal treatments for sepsis given clinical time series and historical treatment decisions taken by clinicians, and we show that the Gaussian process preprocessing layer and use of a recurrent architecture offers improvements over standard deep reinforcement learning methods. We conclude in Chapter 5 with a summary of future areas for work, and a discussion on practical considerations and challenges involved in deploying machine learning models into actual clinical practice.
机译:临床预测模型可帮助医生做出更好的数据驱动决策,从而改善患者预后。鉴于随着电子病历的广泛采用而可获得的大量数据,因此需要更灵活的统计模型来解决该数据的混乱和复杂性。在本文中,我们着重于开发临床时间序列模型,因为医疗保健中的大多数数据都是纵向收集的,因此必须将这种结构考虑在内。在这种具有许多缺失值的不规则采样,嘈杂的时间序列的情况下,基于高斯过程建立的模型是很自然的。此外,它们还具有考虑和量化不确定性的额外好处,这在医疗决策中非常有用。本文开发了基于新的基于高斯过程的医学时间序列模型,并结合了相关算法,对大规模电子病历数据进行了有效的推断。我们使用从杜克大学医疗保健系统获得的本地数据将这些模型应用于几种实际的医疗保健应用程序。在第一章中,我们简要概述了临床预测模型,电子健康记录和高斯过程。在第2章中,我们在慢性肾脏疾病管理的背景下为临床时间序列开发了几种高斯过程模型。我们展示了我们针对纵向和事件发生时间数据的联合模型以及针对多元时间序列的模型如何能够对患者的未来疾病轨迹做出准确的预测。在第3章中,我们将多输出高斯过程与来自深度学习的下游黑盒深度递归神经网络模型相结合。我们将此建模框架应用于临床时间序列,以改善医院患者中败血症的早期检测,并表明高斯过程预处理层既可以进行不确定性量化,又可以作为数据扩充的形式来减少过度拟合。在第4章中,我们再次将多输出高斯过程用作无模型深度强化学习中的预处理层。这里的目标是在给定临床时间序列和临床医生做出的历史性治疗决定的情况下,学习败血症的最佳治疗方法,并且我们证明高斯过程预处理层和循环结构的使用提供了对标准深度强化学习方法的改进。在第5章中,我们总结了未来的工作领域,并讨论了将机器学习模型部署到实际临床实践中的实际考虑因素和挑战。

著录项

  • 作者

    Futoma, Joseph.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Statistics.;Computer science.;Biostatistics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号