首页> 外文学位 >The structure of magnetohydrodynamic turbulence.
【24h】

The structure of magnetohydrodynamic turbulence.

机译:磁流体动力湍流的结构。

获取原文
获取原文并翻译 | 示例

摘要

Magnetized astrophysical plasmas often exhibit turbulent motions. Such plasmas frequently can be described by magnetohydrodynamics (MHD). I have studied the structure of MHD turbulence numerically. I have performed direct 3-dimensional numerical simulations for MHD turbulence in a periodic box of size 2pi threaded by uniform external magnetic fields. I have considered two extreme limits---strong external magnetic field limits and weak/zero external field limits. In the strong external field limits, I have analyzed the structure of eddies as a function of scale. The results are consistent with the scaling law proposed by Goldreich and Sridhar: smaller eddies are more elongated than larger ones. In the weak/zero external field limits, I have studied the structure and generation of magnetic fields. I have found that the magnetic fields are amplified through field line stretching at a rate proportional to the difference between the velocity and the magnetic field strength times a constant. Equipartition between the kinetic and magnetic energy densities occurs at a scale somewhat smaller than the kinetic energy peak. Above the equipartition scale the velocity structure is, as expected, nearly isotropic. The magnetic field structure at these scales is uncertain, but the field correlation function is very weak. At the equipartition scale the magnetic fields show only a moderate degree of anisotropy, so that the typical radius of curvature of field lines is comparable to the typical perpendicular scale for field reversal. In other words, there are few field reversals within eddies at the equipartition scale, and no fine-grained series of reversals at smaller scales. At scales below the equipartition scale, both velocity and magnetic structures are anisotropic; the eddies are stretched along the local magnetic field lines.
机译:磁化的天体等离子体通常表现出湍流运动。此类等离子体经常可以用磁流体动力学(MHD)描述。我已经对MHD湍流的结构进行了数值研究。我已经在大小为2pi的周期盒中通过均匀的外部磁场对MHD湍流进行了直接的3维数值模拟。我考虑了两个极端限制-强外部磁场限制和弱/零外部磁场限制。在强大的外场限制下,我分析了涡旋的结构与尺度的关系。结果与Goldreich和Sridhar提出的比例定律一致:较小的涡流比较大的涡流拉长。在弱/零外部磁场极限下,我研究了磁场的结构和产生。我发现磁场是通过磁力线拉伸而放大的,速率与速度和磁场强度之差乘以一个常数成比例。动能和磁能密度之间的均分发生在比动能峰值小的范围内。如所期望的,在均分尺度之上,速度结构几乎是各向同性的。在这些尺度上的磁场结构是不确定的,但是场相关函数非常弱。在等分尺度上,磁场仅表现出中等程度的各向异性,因此,场线的典型曲率半径与场反转的典型垂直尺度相当。换句话说,在等分尺度上,涡旋内的场反转很少,而在较小尺度上,没有细粒度的一系列反转。在等分尺度以下的尺度上,速度和磁结构都是各向异性的。涡流沿着局部磁场线伸展。

著录项

  • 作者

    Cho, Jungyeon.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Astronomy.;Plasma physics.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 75 p.
  • 总页数 75
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号