首页> 外文学位 >Development and validation of a three-dimensional numerical model for application to river flow.
【24h】

Development and validation of a three-dimensional numerical model for application to river flow.

机译:开发并验证了应用于河流流量的三维数值模型。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes a computational fluid dynamics (CFD) model for general hydraulic flows in ducts, open-channels, and rivers. The work is motivated by the need for an accurate, efficient, and robust solver for typical river applications. The model employs the three-dimensional (3D), Reynolds-average Navier-Stokes (RANS) equations, in conjunction with a turbulence model, formulated in generalized curvilinear coordinates. An implicit time-marching scheme is used to solve the governing equations with the PISO algorithm for the velocity-pressure coupling. The convective terms are discretized using a second-order deferred correction scheme. The shear terms and pressure gradients are discretized using a second-order central difference scheme. A patched multiblock method is developed to handle complex geometry. Typical boundary conditions encountered in river flows are implemented.; A rigorous numerical verification procedure is followed to assess the accuracy of the numerical model. The model is used to calculate laminar flow through a 90° curved square duct and turbulent flow through an S-shaped open-channel. The computational efficiency and accuracy of the model are assessed. Good agreement between the model prediction and laboratory measurement is obtained.; This model is then used to investigate the physics of 90° open-channel junction flows. Experimental data of Shumate (1998) are used to validate the model performance. The comparisons indicate that the model captures the flow features observed in the experiments, including water surface profiles, separation zones, and secondary currents.; Application is further made to calculate the flow through a reach of Chattahoochee River near Holcomb Bridge. The region contains three bridge piers, an old water intake, a submerged rock weir, and six water intakes. The complex geometric features of this reach make it a challenging test case for a numerical model. The results are compared with velocity distributions at 0.6 water depth and water surface velocity vector field from a 1:16 laboratory model. Good agreements were obtained.; The present work advances the status of CFD methods for complex flows in hydraulic engineering. The success of two applications demonstrates the model's potentiality in simulating complex hydraulics problems, including river reaches.
机译:本文描述了导管,明渠和河流中一般液压流动的计算流体动力学(CFD)模型。这项工作的动力是需要针对典型河流应用的准确,高效和强大的求解器。该模型采用三维(3D)雷诺平均Navier-Stokes(RANS)方程,并结合了以广义曲线坐标表示的湍流模型。对于速度-压力耦合,使用隐式时间行进方案通过PISO算法求解控制方程。对流项使用二阶延迟校正方案离散化。剪切项和压力梯度使用二阶中心差分方案离散。开发了修补的多块方法来处理复杂的几何图形。实施了河流中遇到的典型边界条件。遵循严格的数值验证程序来评估数值模型的准确性。该模型用于计算通过90°弯曲方管的层流和通过S形明渠的湍流。评估了模型的计算效率和准确性。在模型预测和实验室测量之间取得了良好的一致性。然后,使用该模型研究90°明渠结流的物理特性。 Shumate(1998)的实验数据用于验证模型性能。比较表明,该模型捕获了实验中观察到的流动特征,包括水面轮廓,分离带和二次流。进一步应用来计算通过霍尔科姆大桥附近的查塔胡奇河段的流量。该地区包含三个桥墩,一个旧进水口,一个淹没的堰坝和六个进水口。此范围的复杂几何特征使其成为数值模型的具有挑战性的测试案例。将结果与1:16实验室模型中0.6水深处的速度分布和水表面速度矢量场进行了比较。获得了良好的协议。本工作提高了水力工程中复杂流的CFD方法的现状。两项应用的成功证明了该模型在模拟复杂的水力问题(包括河道)方面的潜力。

著录项

  • 作者

    Huang, Jianchun.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号