首页> 外文学位 >Combining transgenic and marker-assisted selection approaches to the improvement of insect resistance in soybean.
【24h】

Combining transgenic and marker-assisted selection approaches to the improvement of insect resistance in soybean.

机译:结合转基因和标记辅助选择方法提高大豆的抗虫性。

获取原文
获取原文并翻译 | 示例

摘要

The utility of combining two approaches for improving insect resistance in soybean was evaluated through field studies with a transgenic line, mapping of resistance quantitative trait loci (QTLs), and marker-assisted selection to combine transgenic resistance and host plant resistance. Jack-Bt, a transgenic line expressing a cry1Ac transgene from Bacillus thuringiensis ssp. kurstaki was evaluated for resistance to corn earworm (Helicoverpa zea Boddie), soybean looper (Pseudoplusia includens Walker), and velvetbean caterpillar (Anticarsia gemmatalis Hübner) in a 1996 field study. Plants in mesh-covered cages were artificially infested with larvae and resistance was measured as percent defoliation. Additional cage studies with corn earworm and velvetbean caterpillar were conducted in 1997 and 1998, and natural infestation studies were also conducted in 1998. These studies indicated that, in comparison with untransformed ‘Jack’ and the resistant breeding line GatIR81-296, Jack-Bt has a high level of resistance to velvetbean caterpillar and the lesser cornstalk borer, and good resistance to the corn earworm. Jack-Bt resistance to soybean looper was significantly better than that of Jack, but was lower than resistance to the other pest species.; Simple sequence repeats (SSRs) were used to remap three antixenosis (nonpreference) QTLs which had been previously mapped to linkage groups (LGs) D1b, H, and M of soybean PI 229358 using restriction fragment length polymorphisms (RFLPs). SSRs known to be linked to RFLP loci close to the three QTLs were screened for length polymorphisms in a ‘Cobb’ (susceptible) × PI 229358 cross. An F2 population of 100 plants from this cross was genotyped at six SSR loci on LG D1b, seven on LG H, and nine on LG M. These data were then used to construct integrated RFLP-SSR linkage maps of the regions containing the QTLs, and were combined with data for corn earworm defoliation of F2:3 plants to remap the positions of the three QTLs. Interval mapping, single factor analysis of variance, and multiple regression were used to determine the most likely positions of the QTLs relative to the available markers. In addition to improving the resolution of the QTL maps, the identification of SSRs closely linked to the QTLs provided markers useful in a concurrent marker-assisted selection project.; A backcross scheme was implemented to introgress the LG H and LG M antixenosis QTLs from PI 229358 into a predominantly Jack-Bt genetic background, so that the value of combining these two types of resistance could be tested. SSR markers were used to select plants in the BC2F1, BC 2F2 and BC2F3 generations that had desirable genotypes, and selected BC2F3 plants were classified into one of eight classes representing all possible combinations for presence or absence of the cry1Ac transgene and the two QTLs. Resistance of these plants was evaluated based on percent defoliation in detached leaf bioassays with corn earworm and velvetbean caterpillar. First and second instar larvae of both pest species were highly sensitive to the Cry1Ac protein, and damage to leaves from plants carrying the transgene was rare.
机译:通过转基因品系的田间研究,抗性定量性状基因座(QTL)的定位以及标记辅助选择以结合转基因抗性和寄主植物抗性,评估了结合两种方法来提高大豆抗虫性的效用。 Jack-Bt,一种表达苏云金芽孢杆菌 ssp的 cry1Ac 转基因的转基因品系。评价了 kurstaki 对玉米耳虫( Helicoverpa zea Boddie),大豆弯针( Pseudoplusia includens Walker)和天鹅绒毛毛虫( Anticarsia gemmatalis Hübner)在1996年的现场研究中。用网孔覆盖的笼子中的植物被幼虫人工感染,并以脱叶百分数测量抗性。 1997年和1998年还进行了玉米穗虫和天鹅绒毛虫的笼子研究,1998年也进行了自然侵染研究。这些研究表明,与未转化的“杰克”和抗性育种系GatIR81-296相比,杰克-Bt对绒毛虫和较小的玉米talk蛀虫具有较高的抗性,并且对玉米ear虫具有良好的抗性。 Jack-Bt对大豆弯角的抗性明显好于Jack,但低于对其他害虫的抗性。使用简单序列重复(SSR)来重新映射三个先前已使用限制性片段长度多态性(RFLP)定位到大豆PI 229358的连接基团(LGs)D1b,H和M的抗氧尿症(非优先)QTL。在“ Cobb”(易感)×PI 229358杂交中筛选了已知与三个QTL附近的RFLP基因座相关的SSR的长度多态性。在LG D1b上的六个SSR基因座,LG H上的七个SSR基因座和LG M上的九个SSR基因座上,对来自该杂交的100个植物的F 2 种群进行基因分型。然后将这些数据用于构建整合的RFLP-SSR连锁包含QTL的区域的地图,并与F 2:3 植物的玉米穗虫脱叶数据结合以重新映射三个QTL的位置。区间映射,方差单因素分析和多元回归用于确定相对于可用标记而言QTL最可能的位置。除了提高QTL图的分辨率外,与QTL紧密相关的SSR的鉴定还提供了在并发标记辅助选择项目中有用的标记。实施了回交方案,以将PI 229358的LG H和LG M抗异物QTL引入到主要的Jack-Bt遗传背景中,从而可以测试将这两种类型的抗性组合在一起的价值。 SSR标记用于选择BC 2 F 1 ,BC 2 F 2 和BC 中的植物具有理想基因型的> 2 F 3 世代,并将选定的BC 2 F 3 植物分类为代表以下八类之一是否存在 cry1Ac 转基因和两个QTL的所有可能组合。这些植物的抗性是根据玉米穗虫和天鹅绒毛虫的离体叶片生物测定中的落叶百分比评估的。两种害虫的第一龄和第二龄幼虫对 Cry1Ac 蛋白高度敏感,携带转基因植物对叶片的伤害很少见。

著录项

  • 作者

    Walker, David Russell.;

  • 作者单位

    University of Georgia.;

  • 授予单位 University of Georgia.;
  • 学科 Agriculture Agronomy.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农学(农艺学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号