首页> 外文学位 >Solving Large-Scale AC Optimal Power Flow Problems Including Energy Storage, Renewable Generation, and Forecast Uncertainty
【24h】

Solving Large-Scale AC Optimal Power Flow Problems Including Energy Storage, Renewable Generation, and Forecast Uncertainty

机译:解决大规模交流最优潮流问题,包括能量存储,可再生能源发电和预测不确定性

获取原文
获取原文并翻译 | 示例

摘要

Renewable generation and energy storage are playing an ever increasing role in power systems. Hence, there is a growing need for integrating these resources into the optimal power flow (OPF) problem. While storage devices are important for mitigating renewable variability, they introduce temporal coupling in the OPF constraints, resulting in a multiperiod OPF formulation. This work explores a solution method for multiperiod AC OPF problems that combines a successive quadratic programming approach (AC-QP) with a second-order cone programming (SOCP) relaxation of the OPF problem. The solution of the SOCP relaxation is used to initialize the AC-QP OPF algorithm. Additionally, the lower bound on the objective value obtained from the SOCP relaxation provides a measure of solution quality. Compared to other initialization schemes, the SOCP-based approach offers improved convergence rate, execution time and solution quality.;A reformulation of the the AC-QP OPF method that includes wind generation uncertainty is then presented. The resulting stochastic optimization problem is solved using a scenario based algorithm that is based on randomized methods that provide probabilistic guarantees of the solution. This approach produces an AC-feasible solution while satisfying reasonable reliability criteria. The proposed algorithm improves on techniques in prior work, as it does not rely upon model approximations and maintains scalability with respect to the number of scenarios considered in the OPF problem. The optimality of the proposed method is assessed using the lower bound from the solution of an SOCP relaxation and is shown to be sufficiently close to the globally optimal solution. Moreover, the reliability of the OPF solution is validated via Monte Carlo simulation and is demonstrated to fall within acceptable violation levels. Timing results are provided to emphasize the scalability of the method with respect to the number of scenarios considered and demonstrate its utility for real-time applications.;Several extensions of this stochastic OPF are then developed for both operational and planning purposes. The first is to include the cost of generator reserve capacity in the objective of the stochastic OPF problem. The need for the increased accuracy provided by the AC OPF is highlighted by a case study that compares the reliability levels achieved by the AC-QP algorithm to those from the solution of a stochastic DC OPF. Next, the problem is extended to a planning context, determining the maximum wind penetration that can be added in a network while maintaining acceptable reliability criteria. The scalability of this planning method with respect not only to large numbers of wind scenarios but also to moderate network size is demonstrated. Finally, a formulation that minimizes both the cost of generation and the cost of reserve capacity while maximizing the wind generation added in the network is investigated. The proposed framework is then used to explore the inherent tradeoff between these competing objectives. A sensitivity study is then conducted to explore how the cost placed on generator reserve capacity can significantly impact the maximum wind penetration that can be reliably added in a network.
机译:可再生能源发电和能源存储在电力系统中发挥着越来越重要的作用。因此,越来越需要将这些资源集成到最佳功率流(OPF)问题中。虽然存储设备对于减轻可再生可变性很重要,但它们在OPF约束条件中引入了时间耦合,从而导致了多周期OPF公式化。这项工作探索了解决多周期AC OPF问题的方法,该方法将连续二次编程方法(AC-QP)与OPF问题的二阶锥规划(SOCP)松弛相结合。 SOCP松弛的解决方案用于初始化AC-QP OPF算法。另外,从SOCP松弛获得的目标值的下限提供了解决方案质量的度量。与其他初始化方案相比,基于SOCP的方法可提高收敛速度,执行时间和解决方案质量。然后,提出了包含风力发电不确定性的AC-QP OPF方法的重新表述。使用基于场景的算法解决了最终的随机优化问题,该算法基于提供解决方案的概率保证的随机方法。这种方法可在满足合理可靠性标准的同时,提供AC可行的解决方案。所提出的算法改进了先前工作中的技术,因为它不依赖于模型逼近,并且相对于OPF问题中考虑的场景数量保持了可伸缩性。使用SOCP弛豫解的下限评估了所提出方法的最优性,并显示出它与全局最优解足够接近。此外,OPF解决方案的可靠性通过蒙特卡洛模拟得到了验证,并被证明在可接受的违规水平之内。提供了时序结果以强调该方法相对于所考虑的场景数量的可伸缩性,并证明了其在实时应用中的实用性。然后,出于操作和计划的目的,对该随机OPF进行了多次扩展。首先是将发电机备用容量的成本包括在随机OPF问题的目标之内。案例研究突显了对提高AC OPF精度的需求,该案例将AC-QP算法获得的可靠性水平与随机DC OPF解决方案的可靠性水平进行了比较。接下来,将问题扩展到规划环境,确定可以在保持可接受的可靠性标准的同时在网络中增加的最大风速。展示了这种规划方法的可扩展性,不仅针对大量风情,而且还针对中等规模的网络。最后,研究了一种使发电成本和备用容量成本最小化,同时使网络中增加的风力发电最大化的公式。然后,将所提出的框架用于探索这些相互竞争的目标之间的固有权衡。然后进行敏感性研究,以探讨发电机备用容量的成本如何显着影响可以可靠地添加到网络中的最大风速。

著录项

  • 作者

    Marley, Jennifer Felder.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号