首页> 外文学位 >Instrumental optimization of ruthenium(bpy)(3,3+)-based chemiluminescence and application as a detection strategy for capillary electrophoresis and micellar electrokinetic chromatography.
【24h】

Instrumental optimization of ruthenium(bpy)(3,3+)-based chemiluminescence and application as a detection strategy for capillary electrophoresis and micellar electrokinetic chromatography.

机译:基于钌(bpy)(3,3+)的化学发光的仪器优化及其作为毛细管电泳和胶束电动色谱检测策略的应用。

获取原文
获取原文并翻译 | 示例

摘要

Capillary electrophoresis (CE) has become a powerful separation tool recently. Among the detection methods available in CE, electrogenerated chemiluminescence (ECL) detection offers low detection limits with simple instrumentation. Electrogenerated Ru(bpy)33+-based CL has been used as a detection strategy for FIA, HPLC and CE to detect a variety of analytes including amines, amino acids, oxalate, various antihistamine drugs, and NADH.; In Chapter 2, Ru(bpy)33+-based CL detection in CE using a continuous in situ generation scheme is demonstrated and shown to provide advantages over other Ru3+ generation protocols. This detection strategy can be used to detect most amines and amino acids without derivatization, thus facilitating the optimization of the CE separation process independent of the detection method. The in situ cell described herein can operate continuously without the need to replenish the Ru(bpy)3 2+ reservoir and provides precise control of the electrochemical, light generation and detection processes. The important operational parameters for the in situ approach as applied to CE are identified and optimized, and the quantitative characteristics of this approach are evaluated.; In Chapter 3, the in situ generated Ru(bpy)33+-based CL detection cell is shown to be compatible with MEKC. The CL reagent, Ru(bpy) 32+ is continuously added postcapillary to avoid precipitating the anionic surfactant used to enhance the separation of neutral analytes. Ru(bpy)33+ is then electrochemically generated in situ at the interface between the separation capillary and the working electrode, where it can react with specific analytes, for example amines and amino acids to produce chemiluminescent emission. With this scheme, the critical micelle concentration is not exceeded in the detection zone, freeing the analyte to react with the Ru(bpy)33+ CL reagent. The separation and detection of various underivatized amines is demonstrated using this methodology. The experimental approaches used to improve the limit of detection while maintaining high separation efficiency are evaluated and discussed.; Two different designs for the Ru(bpy)33+-based CL detection cell were demonstrated and evaluated in Chapter 4. A bulk electrolysis generated Ru(bpy)33+ detection cell was designed and constructed where Ru(bpy)33+ is generated in the reagent capillary and delivered to the detection zone. The operational parameters and performance of the detection cell as compared to the in situ generated Ru(bpy)33+ detection cell, are optimized and discussed. The limitation of the in situ cell for the analysis of electrochemically active amines was investigated. An in situ generated Ru(bpy)3 3+ cell with a joint-less separation capillary was designed and constructed to eliminate this time consuming process and to improve cell-to-cell reproducibility. The performance of this new detection cell was demonstrated and its challenges and advantages are also discussed.; Application of the in situ generated Ru(bpy)33+ detection cell for the analysis of PTH and MTH amino acids is discussed in Chapter 5. The possibility of separating and detecting PTH and MTH amino acids by MEKC with Ru(bpy)33+-based CL detection was investigated. The limitation of this detection strategy for the analysis of PTH and MTH amino acids is addressed. Additional study of the stability of PTH and MTH amino acids, by CE with Ru(bpy)33+-based CL detection was performed at pH 9 and 10.
机译:毛细管电泳(CE)最近已成为一种功能强大的分离工具。在CE中可用的检测方法中,电化学发光(ECL)检测可通过简单的仪器提供较低的检测限。基于电生成的Ru(bpy) 3 3 + 的CL已被用作FIA,HPLC和CE的检测策略,以检测多种分析物,包括胺,氨基酸,草酸盐,各种抗组胺药和NADH。在第2章中,演示了使用连续原位生成方案在CE中基于Ru(bpy) 3 3 + 的CL检测,并显示出与其他Ru 3 + 生成协议。这种检测策略可用于检测大多数胺和氨基酸而无需衍生化,从而有助于优化与检测方法无关的CE分离过程。本文所述的原位电池可连续运行,而无需补充Ru(bpy) 3 2 + 储库,并提供对电化学,光产生和检测过程的精确控制。确定并优化了应用于CE的原位方法的重要操作参数,并评估了该方法的定量特性。在第三章中,显示了基于原位生成的Ru(bpy) 3 3 + 的CL检测池与MEKC兼容。毛细管后连续添加CL试剂Ru(bpy) 3 2 + ,以避免沉淀用于增强中性分析物分离的阴离子表面活性剂。然后在分离毛细管和工作电极之间的界面上原位电化学生成Ru(bpy) 3 3 + ,它可以与特定的分析物(例如胺)反应和氨基酸产生化学发光。采用该方案,在检测区域内未超过临界胶束浓度,使分析物与Ru(bpy) 3 3 + CL试剂反应。使用该方法论证了各种未衍生胺的分离和检测。评估和讨论了用于在保持高分离效率的同时提高检测限的实验方法。在第4章中对基于Ru(bpy) 3 3 + 的CL检测池进行了两种不同的设计并进行了评估。大量电解生成的Ru(bpy)设计并构建了3 3 + 检测池,在试剂毛细管中生成Ru(bpy) 3 3 + 到检测区域。与原位生成的Ru(bpy) 3 3 + 检测池相比,对检测池的运行参数和性能进行了优化和讨论。研究了用于电化学活性胺分析的原位电池的局限性。设计并构建了具有无接头分离毛细管的原位生成的Ru(bpy) 3 3 + 细胞,以消除该耗时的过程并改善细胞与细胞之间的关系。细胞重现性。展示了这种新型检测池的性能,并讨论了其挑战和优势。第5章讨论了原位生成的Ru(bpy) 3 3 + 检测池在PTH和MTH氨基酸分析中的应用。分离和检测的可能性研究了MEKC基于Ru(bpy) 3 3 + 的CL检测对PTH和MTH氨基酸的影响。解决了这种检测策略在分析PTH和MTH氨基酸方面的局限性。 CE在基于pH值9和10的条件下,通过基于Ru(bpy) 3 3 + 的CL检测,通过CE进一步研究了PTH和MTH氨基酸的稳定性。

著录项

  • 作者

    Wang, Xin.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

  • 入库时间 2022-08-17 11:47:49

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号