首页> 外文学位 >Non-Abelian Composition Factors of m-Rational Groups.
【24h】

Non-Abelian Composition Factors of m-Rational Groups.

机译:m理性群体的非阿贝尔构成因素。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we discuss several problems in the representation theory of finite groups of Lie type. In Chapter 2, we will give essential background material that will be useful for the entirety of the thesis. We will investigate the construction of groups of Lie type, as well as their representations. We will define the field of values of a character afforded by a representation, and state useful results concerning these fields. In Chapter 3, we examine Zsigmondy primes and their existence, a necessary ingredient in proving our main results. In Chapters 4 and 5, we describe our main results in the ordinary and modular cases, which we now summarize.;A finite group G is said to be m-rational, for a fixed positive integer m, if [Q(chi) :Q]|m for any irreducible character chi ∈ Irr(G). In 1976, R. Gow studied the structure of solvable rational groups (i.e. m = 1), and found that the possible composition factors of a solvable rational group are cyclic groups of prime order p ∈ {2,3,5}. Just over a decade later, W. Feit and G. Seitz classified the possible non-abelian composition factors of (non-solvable) rational groups. In 2008, J. Thompson found an upper bound of p ≤ 13 for the order of the possible cyclic composition factors of an arbitrary rational group, and conjectured that the bound can be improved to p ≤ 5. More recently, J. McKay posed the question of determining the structure of quadratic rational groups (i.e. m = 2). J. Tent studied the cyclic composition factors of solvable quadratic rational groups in 2013. In Chapter 4, we answer McKay's question concerning non-abelian composition factors, and generalize our results to non-solvable m-rational groups.;Modular character theory was founded by R. Brauer in the 1930's, and has been useful in proving historical results including the classification of finite simple groups. In Chapter 5, we prove the modular version of our results. Though our conclusions are similar to those found in the complex case, the methods for proving the results are typically much more complicated.
机译:本文讨论了李型有限群表示理论中的几个问题。在第二章中,我们将提供必要的背景材料,这将对整个论文有用。我们将研究Lie类型的组的构造及其表示。我们将定义表示形式提供的字符的值的字段,并陈述有关这些字段的有用结果。在第3章中,我们检查了Zsigmondy素数及其存在,这是证明我们的主要结果的必要组成部分。在第4章和第5章中,我们描述了在普通情况和模块化情况下的主要结果,现总结如下:对于一个固定的正整数m,如果[Q(chi): Q] | m对于任何不可约性字符chi∈Irr(G)。 1976年,R。Gow研究了可解有理基团的结构(即m = 1),发现可解有理基团的可能组成因子是质数阶p∈{2,3,5}的循环基团。仅仅十年之后,W。Feit和G. Seitz对(不可解)有理群的可能的非阿贝尔构成因素进行了分类。 2008年,汤普森(J. Thompson)找到了一个p≤13的上限,该上限是任意有理群的可能循环组成因子的顺序,并推测该边界可以提高到p≤5。确定二次有理群的结构的问题(即m = 2)。 J. Tent在2013年研究了可解二次有理族的循环组成因子。在第四章​​中,我们回答了麦凯关于非阿贝尔组成因子的问题,并将我们的结果推广到了不可解m有理族。由R. Brauer在1930年代提出,对证明历史结果(包括对有限简单组的分类)很有用。在第5章中,我们证明了结果的模块化形式。尽管我们的结论与复杂案例中的结论相似,但证明结果的方法通常要复杂得多。

著录项

  • 作者

    Trefethen, Stephen J.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号