首页> 外文学位 >Bacterial genesis and use of iron sulfides from allochthonous iron and sulfide.
【24h】

Bacterial genesis and use of iron sulfides from allochthonous iron and sulfide.

机译:细菌的产生以及来自异源铁和硫化物的硫化铁的使用。

获取原文
获取原文并翻译 | 示例

摘要

Biogenic iron sulfides (FeSx) are most commonly formed by a passive nucleation on the cells envelopes (process known as induced type of biomineralization) and well documented for Bacillus subtilis, or possibly by an active mechanisms (controlled type of biomineralization) claimed to exist in some magnetotactic bacteria. The induced biomineralization does not result in any thermodynamic advantages for the cells. Still, the reaction sequence between iron and sulfides is exergonic, has a high reducing power and in certain cases a significant fractionation of sulfur during the formation of biogenic pyrite (FeS2) was observed. Therefore, there is ground to question if this type of reactions can also represent an energy resource for some microorganisms as well. Formation of FeSx minerals has been proposed previously as the first source of energy for early life forms and for some extant microorganisms but it was never demonstrated due to experimental difficulties. Using a sulfidic hydrothermal system from Romania and springs from the Yellowstone Park as sources I obtained liquid enrichments and successfully isolated bacterial strains that grow by using the reaction: Fe+2+HS -x=FeSx+ H2 as an energy resource. Iron monosulfides and pyrite are formed as metabolic byproducts and deposited in the periplasmic spaces of the cells. One of the strains identified as a new species of Proteobacteria, phylogenetically related with Thiobacillus thermosulfatus displays a controlled type of biomineralization of iron sulfides, that is: temperature sensitivity, dependence on the metabolic state and results in increase of the cellular energy (ATP) when ferrous iron and sulfides were experimentally provided.; This study improved the resolution of the Cr2+ reduction method used for the discrimination of iron sulfide precipitates from microbial cultures, identified subsurface habitats and fingerprints characteristic for dissimilatory precipitation of iron-sulfides, showed that the Fe2+ /HS- couple can be used by extant microorganisms as a source of energy, showed that living organisms can derive part of their energy from precipitation of minerals and provided support for the FeS bioenergetic model of early life.
机译:最常见的生物成因硫化铁(FeSx)是通过在细胞膜上进行被动成核(称为诱导型生物矿化的过程)而形成的,对枯草芽孢杆菌有充分记载,或者可能是据称存在于枯草芽孢杆菌中的活性机制(受控类型的生物矿化)。一些趋磁细菌。诱导的生物矿化对细胞没有任何热力学优势。仍然,铁和硫化物之间的反应顺序是强力的,具有高还原能力,在某些情况下,在形成生物黄铁矿(FeS2)期间观察到大量硫分馏。因此,有疑问的是,这种类型的反应是否也可以代表某些微生物的能源。以前已经提出形成FeSx矿物作为早期生命形式和某些现存微生物的第一能源,但由于实验困难,从未得到证实。使用罗马尼亚的硫化物热液系统和黄石公园的泉水作为来源,我获得了液体富集并成功分离出了通过使用以下反应而生长的细菌菌株:Fe + 2 + HS -x = FeSx + H2作为能源。一硫化铁和黄铁矿作为代谢副产物形成,并沉积在细胞的周质空间中。与热硫硫杆菌有亲缘关系的一种被鉴定为变形杆菌的新菌种表现出受控类型的硫化铁生物矿化作用,即:温度敏感性,对代谢状态的依赖性以及在以下情况下导致细胞能量(ATP)增加实验提供了亚铁和硫化物。这项研究提高了Cr2 +还原方法的分辨率,该方法可用于区分微生物培养物中的硫化铁沉淀,鉴定亚表层生境和硫化铁异化沉淀的特征指纹,表明Fe2 + / HS-对可用于现有微生物作为一种能源,表明活有机体可以从矿物质的沉淀中获取部分能量,并为早期生命的FeS生物能模型提供了支持。

著录项

  • 作者

    Popa, Radu.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号