首页> 外文学位 >Densification, microstructure and strength evolution in sintering.
【24h】

Densification, microstructure and strength evolution in sintering.

机译:烧结中的致密化,微观结构和强度演变。

获取原文
获取原文并翻译 | 示例

摘要

Powder metallurgy has the ability to fabricate high quality, complex components to close tolerances in an economical manner. In many applications, a high sintered density is desirable for an improved performance. However, sintering to a high density demands a large shrinkage, often resulting in difficulties with dimensional control. Recent studies indicate the occurrence of a sufficient densification requires a low in situ strength at high sintering temperatures. On the other hand, the low in situ strength often leads to component's distortion in response to the external forces, such as gravity. Unfortunately, lack of knowledge on strength evolution in sintering has been a major challenge to achieve an optimized combination of densification and shape retention.; Therefore, the present study investigates strength evolution in sintering and the effects of processing factors. Experiments are performed on prealloyed bronze and elemental mixture of Fe-2Ni powders. For the bronze, a loose casting method is used to fabricate transverse rupture bars, while bars are injection molded for the Fe-2Ni. The in situ transverse rupture strength is measured using the Penn State Flaming Tensile Tester. Experimental results indicate a dependence of densification and strength on sintering temperature. High temperatures enhance densification and interparticle bonding, resulting in strong sintered structures. However, a low in situ strength at high test temperatures indicates the dominance of thermal softening.; A strength model combining sintering theories and microstructural parameters is developed to predict both the in situ strength and the post-sintering strength. The model demonstrates the strength of the sintered materials depends on the inherent material strength, the square of neck size ratio, sintered density, and thermal softening. The model is verified by comparison of model predictions with experimental data of the bronze and Fe-2Ni. Compared to prior strength models, this model has certain advantages. It is a predictive model for both the in situ strength and post-sintering strength, and can be extended to other systems.
机译:粉末冶金能够以经济的方式制造高质量,复杂的零件以达到接近的公差。在许多应用中,为了提高性能,需要高的烧结密度。然而,烧结至高密度需要大的收缩率,通常导致尺寸控制困难。最近的研究表明,要进行充分的致密化,需要在高烧结温度下降低原位强度。另一方面,低的原位强度通常会导致部件响应于外力(例如重力)而变形。不幸的是,缺乏关于烧结强度发展的知识一直是实现致密化和形状保持的最佳组合的主要挑战。因此,本研究调查了烧结过程中强度的演变以及加工因素的影响。对预合金的青铜和Fe-2Ni粉末的元素混合物进行了实验。对于青铜,使用疏铸法制造横向断裂棒,而棒是针对Fe-2Ni注射成型的。原位横向断裂强度是使用宾夕法尼亚州火焰状拉伸测试仪测量的。实验结果表明致密化和强度对烧结温度的依赖性。高温会增强致密性和颗粒间键合,形成牢固的烧结结构。然而,在高测试温度下低的原位强度表明热软化占优势。建立了结合烧结理论和微观结构参数的强度模型,以预测原位强度和烧结后强度。该模型表明,烧结材料的强度取决于材料的固有强度,颈尺寸比的平方,烧结密度和热软化。通过将模型预测与青铜和Fe-2Ni的实验数据进行比较,验证了该模型。与以前的强度模型相比,该模型具有某些优势。它是原位强度和烧结后强度的一种预测模型,可以扩展到其他系统。

著录项

  • 作者

    Xu, Xiaoping.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号