首页> 外文学位 >Compressibility effects in turbulent nonpremixed reacting shear flows.
【24h】

Compressibility effects in turbulent nonpremixed reacting shear flows.

机译:湍流非预混合反应剪切流中的压缩性效应。

获取原文
获取原文并翻译 | 示例

摘要

Direct simulations of the turbulent shear layer are performed for subsonic-to-supersonic Mach numbers both in the non-reacting and reacting cases. Large computational grids and high-order accuracy enable fully-developed turbulence in a self-similar state to be achieved with profiles of mean velocity and turbulence intensities that agree well with laboratory experiments. The DNS results are used to discriminate between compressibility effects due to high-speed, unequal free-stream density and heat release.; The thickness growth rate of the shear layer exhibits a large reduction with increasing values of the convective Mach number, Mc. DNS and analysis are used to explain this stabilizing effect of compressibility. The following physical mechanism for the compressibility effect is offered: the finite speed of sound in compressible flow introduces a finite time delay in the transmission of pressure signals from one point to an adjacent point and, the consequent decorrelation results in inhibited inter-component energy transfer.; DNS is also used to study the effect of different free stream densities parametrized by the density ratio, s=r2/r1. It is found that the temporal growth rate of the vorticity thickness exhibits a small reduction. However, the momentum thickness growth rate decreases strongly for s≠1. The peak value of the shear stress, uu, is observed to be insensitive to changes in s. The dividing streamline of the shear layer is observed to move into the low-density stream. An analysis is performed to explain this shift and the consequent reduction in momentum thickness growth rate.; An infinitely fast, irreversible reaction between methane and air is assumed for the reacting simulations. In the reacting cases a reduction of the growth rate of the mixing layer is observed with increasing heat release. An analysis is performed to relate the mean density variation to the reduced growth rate. Scalar and scalar dissipation statistics exhibit significant effects of heat release. For example, unlike the non-reacting case, averages of scalar dissipation conditioned on scalar depend on the value of the scalar in reacting cases. Scalings for the averaged turbulent and scalar dissipation based on the vorticity thickness as length scale are proposed.
机译:在非反应和反应情况下,都对亚音速到超音速马赫数进行了湍流剪切层的直接模拟。大的计算网格和高阶精度使得平均速度和湍流强度的分布与实验室实验非常吻合,从而可以在自相似状态下充分发展湍流。 DNS结果用于区分由于高速,不相等的自由流密度和热量释放而产生的压缩效果。随着对流马赫数 M c 值的增加,剪切层的厚度增长速率呈现出较大的下降趋势。 DNS和分析用于解释可压缩性的这种稳定作用。提供了以下可压缩效果的物理机制:可压缩流中的有限声速在压力信号从一个点到相邻点的传输中引入了一个有限的时间延迟,因此,去相关导致了组件间能量的传递受到抑制。 。; DNS还用于研究由密度比 s = r 2 / r 设置的不同自由流密度的影响。 g> 1 发现旋涡厚度随时间的增长速率减小幅度很小。但是,在 s≠1时,动量厚度增长率大大降低。 剪应力的峰值 uu 被观察到对 s 的变化不敏感。观察到剪切层的分割流线移动到低密度流中。进行分析以解释这种偏移以及由此导致的动量厚度增长率的降低。进行反应模拟时,假定甲烷与空气之间的反应是无限快速,不可逆的。在反应情况下,随着放热增加,观察到混合层的生长速率降低。进行分析以将平均密度变化与降低的增长率相关。标量和标量耗散统计数据显示热量释放的显着影响。例如,与非反应情况不同,在反应情况下,以标量为条件的标量耗散的平均值取决于标量的值。提出了基于涡度厚度作为长度尺度的平均湍流和标量耗散的标度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号