首页> 外文学位 >Energy partitioning within a one-electron formalism: Theory and applications to small molecule chemisorption on metallic surfaces.
【24h】

Energy partitioning within a one-electron formalism: Theory and applications to small molecule chemisorption on metallic surfaces.

机译:单电子形式中的能量分配:金属表面上小分子化学吸附的理论和应用。

获取原文
获取原文并翻译 | 示例

摘要

Chapters 1 and 2 of this dissertation focus on the formulation of Hamilton population analysis---a scheme for partitioning the total energy of molecular and extended materials in one, two, and three dimensions---within a semi-empirical extended Huckel framework.; In chapter 1 the characteristics of Hamilton population analysis are contrasted with those of Mulliken's overlap population analysis. Mulliken's overlap population analysis---a partitioning of the valence electron density amongst the atoms and bonds---results in atomic charges and bond populations that have long proven their worth in qualitative studies of chemical bonding in both molecules and solids.; The molecular Hamilton population formalism introduced in chapter 1 is extended in chapter 2 to treat bonding in one, two, and three dimensional materials. A variety of energy partitioning schemes based on both valence and fragment orbital basis sets are presented.; Chapter 3 deals with the application of the Hamilton population formalism to the study of CO chemisorption on the Ni(100) surface. The Hamilton population formalism effectively highlights significant surface-CO bonding contributions from low-lying (non-frontier) CO molecular orbitals and the surface s and p bands. The inclusion of such contributions in surface-CO bonding models represents a significant extension of traditional, frontier-orbital based models of surface-CO bonding.; Chapter 3 concludes with a comparative energy partitioning study of Ni-CO bonding in the c(2 x 2)-CO/Ni(100) chemisorption system and a "molecular model" of the surface chemisorption site.; The model of surface-CO bonding proposed in chapter 3 is extended in chapter 4 to include CO chemisorption on the Pt(111), Cu(111), and Al(111) surfaces. By choosing to study CO chemisorption on both transition metal and main-group surfaces the role of the surface d-band in binding CO to the surface can be fully investigated.; The formation of the surface-CO chemisorption bond is interpreted as the net result of variations in surface-CO, C-O and M-M (M = Pt,Cu,Al) bonding.; In the final chapter Hamilton population analysis is used to investigate the changes in electronic structure accompanying the reaction between coadsorbed CO and O on the Pt(111) surface. A surface-mediated co-activation of CO and O is proposed to account for the reaction barrier and the roles of the individual CO and O orbitals in OC-O bond formation are discussed.
机译:本论文的第一章和第二章着重介绍了在半经验扩展的Huckel框架内汉密尔顿总体分析的公式化-一种将分子和扩展材料的总能量按一维,二维和三维划分的方案。 ;在第一章中,汉密尔顿人口分析的特征与穆里肯重叠人口分析的特征进行了对比。 Mulliken的重叠种群分析-原子和键之间的价电子密度的分配--原子电荷和键种群的结果早已证明在定性研究分子和固体中化学键的价值。第一章中介绍的分子汉密尔顿总体形式主义在第二章中进行了扩展,以处理一维,二维和三维材料中的键合。提出了基于价态和碎片轨道基集的多种能量分配方案。第3章讨论了汉密尔顿种群形式主义在Ni(100)表面CO化学吸附研究中的应用。汉密尔顿族的形式主义有效地突出了低地(非边界)CO分子轨道以及表面s和p带对表面-CO键的重要贡献。在表面-CO键合模型中包括这些贡献代表了传统的基于前沿-轨道的表面-CO键合模型的显着扩展。第三章总结了对c(2 x 2)-CO / Ni(100)化学吸附系统中Ni-CO键的比较能量分​​配研究以及表面化学吸附位点的“分子模型”。第3章中提出的表面-CO键合模型在第4章中进行了扩展,以包括在Pt(111),Cu(111)和Al(111)表面上的CO化学吸附。通过选择研究过渡金属和主族表面上的CO化学吸附,可以充分研究表面d带在CO与表面结合中的作用。表面-CO化学吸附键的形成被解释为表面-CO,C-O和M-M(M = Pt,Cu,Al)键变化的最终结果。在最后一章中,使用汉密尔顿总体分析来研究伴随Pt(111)表面上共吸附的CO和O之间的反应而引起的电子结构变化。提出了一种表面介导的CO和O的共活化来解决反应障碍的问题,并讨论了各个CO和O轨道在OC-O键形成中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号