首页> 外文学位 >Regularized vortex sheet evolution in three dimensions.
【24h】

Regularized vortex sheet evolution in three dimensions.

机译:在三个维度上正规化的涡旋片演化。

获取原文
获取原文并翻译 | 示例

摘要

A computational method is presented to follow the evolution of regularized three-dimensional (3D) vortex sheets through an otherwise irrotational, inviscid, constant-density fluid. The sheet surface is represented by a triangulated mesh with interpolating functions locally defined inside each triangle. C1 continuity is maintained between triangles via combinations of cubic Bézier triangular interpolants. The self-induced sheet motion generally results in a highly deformed surface which is adaptively refined as needed to capture regions of increasing curvature and to avoid severe Lagrangian deformation. Automatic mesh refinement is implemented with an advancing front technique. Sheet motion is regularized by adding a length scale cut-off to the Biot-Savart kernel. Velocity evaluation takes less time than the standard O(N2) scaling, due to utilization of multi-pole expansions of the kernel. Zero, singly, and doubly periodic vortex sheets are simulated, modeling vortex rings, vortex/jet combinations and standard shear layers. Comparisons with previous two-dimensional (2D) results are favorable and 3D simulations are presented. The perturbed 3D planar shear layer is simulated and compared with a similar experiment revealing qualitatively similar results and agreement on the mechanism by which streamwise vorticity is created. We find the ratio of spanwise to streamwise vorticity to vary between 7 and 9 during early stages of roll-up.; A new technique for estimating the curvature singularity time of true vortex sheets (i.e., non-regularized motion) is presented. The motion and singularity time of a planar, doubly periodic sheet, evolving from a 3D normal mode perturbation, is found to reduce to that of a well known singly periodic (and only two-dimensional) problem, an unexpected extension of Moore's [38] non-linear analysis for 2D vortex sheets.
机译:提出了一种计算方法,以遵循通过无旋转,无粘性,恒定密度的流体通过规则化三维(3D)涡旋片的演变。板材表面由一个三角网格表示,该网格具有在每个三角形内部局部定义的插值函数。通过三次Bézier三角插值的组合,在三角形之间保持了 C 1 的连续性。自感应板运动通常会导致高度变形的表面,该表面会根据需要进行自适应精炼,以捕获曲率增加的区域并避免严重的拉格朗日变形。自动网格细化通过先进的前端技术实现。通过向Biot-Savart内核添加一个长度刻度截止值,可以调整纸张运动。由于利用了内核的多极扩展,所以速度评估所需的时间少于标准的 O N 2 )标度。模拟零,单和双周期涡旋片,对涡环,涡/射流组合和标准剪切层建模。与先前的二维(2D)结果进行比较是有利的,并提出了3D仿真。模拟了扰动的3D平面剪切层,并与类似的实验进行了比较,揭示了定性相似的结果,并就形成流向涡旋的机理达成了共识。我们发现,在卷积的早期阶段,跨度涡流与沿流涡流之比在7到9之间变化。提出了一种估计真实涡旋片的曲率奇异时间(即非规则运动)的新技术。从3D法向模态扰动演变而来的平面双周期薄板的运动和奇异时间被发现减少到众所周知的单周期(而且只有二维)问题,这是摩尔定律的意外扩展[38]二维涡旋片的非线性分析。

著录项

  • 作者

    Brady, Mark Adrian.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号