首页> 外文学位 >Kinetic-based investigation of hardening mechanisms in nanolayer composites.
【24h】

Kinetic-based investigation of hardening mechanisms in nanolayer composites.

机译:基于动力学的纳米层复合材料硬化机理研究。

获取原文
获取原文并翻译 | 示例

摘要

Strengthening in nanolayered composite thin films has been attributed to a number of factors including the layer interface Hall-Petch mechanism, modulus mismatch, coherency strains, and layer grain size. In general in order to identify and distinguish between these different mechanisms, the effects of layer thickness on hardness are examined. It is often found (or predicted based on theory) that for comparatively large layer thickness, t, the hardness obeys the relation H = H 0 + H1t −n. It is supposed that H0 and H1t−n are independent of each other. It is often predicted and/or observed that the hardness saturates for sufficiently small t (a few tens of nm) at a level H2. In order to test the hypothesis that H0 and H 1 are independent of each other, we propose a method of obtaining the derivatives of H0 and H 1 independently through an activation analysis of nanoindentation creep, load relaxation, and rate-change experiments. Such experiments are performed on Cu/Ni, Cu/Nb and Si/Si-Ge nanolayer composites. In addition, an activation analysis is proposed in the study of the monolithic thin films of copper, nickel and niobium thin films. Activation data from these thin films indicate that bulk-like dislocation mechanisms operate. Activation data from bulk silicon suggest a kink propagation mechanism for dislocation glide. It is found that Cu/Ni and Cu/Nb multilayers obey H = H 0 + H1t −n and saturate at hardness levels H 2. However, when examined based on the activation analysis, the behaviors of Cu/Ni and Cu/Nb are systematically different. The cause of the discrepancy is discussed in the report. In Si/Si-Ge multilayers it appears that the hardnesses of the composites obey a simple volume average rule for the different layers. We discuss here the effects of incorporated carbon atoms and germanium on hardness and activation areas.
机译:纳米层复合薄膜的增强归因于许多因素,包括层界面霍尔-Petch机理,模量不匹配,相干应变和层晶粒尺寸。通常,为了识别和区分这些不同的机理,研究了层厚度对硬度的影响。通常发现(或基于理论进行预测),对于较大的层厚度t,硬度服从H = H 0 + H1t -n的关系。假设H0和H1t-n彼此独立。通常可以预测和/或观察到,在水平H2处足够小的t(几十纳米)时,硬度会饱和。为了检验H0和H 1彼此独立的假设,我们提出了一种通过纳米压痕蠕变,载荷松弛和速率变化实验的活化分析独立获得H0和H 1的导数的方法。此类实验是在Cu / Ni,Cu / Nb和Si / Si-Ge纳米层复合材料上进行的。另外,在对铜,镍和铌薄膜的单片薄膜的研究中提出了活化分析。这些薄膜的活化数据表明,块状位错机制起作用。来自体硅的激活数据表明位错滑行的扭结传播机制。发现Cu / Ni和Cu / Nb多层遵循H = H 0 + H1t -n并且在硬度水平H 2时饱和。但是,当基于活化分析进行检查时,Cu / Ni和Cu / Nb的行为是:系统地不同。报告中讨论了差异的原因。在Si / Si-Ge多层中,似乎复合材料的硬度遵循不同层的简单体积平均法则。我们在这里讨论掺入碳原子和锗对硬度和活化区的影响。

著录项

  • 作者

    Tambwe, Mwilwa Francis.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号