首页> 外文学位 >Entanglement entropy and entanglement Hamiltonian as characterizations of phases and phase transitions.
【24h】

Entanglement entropy and entanglement Hamiltonian as characterizations of phases and phase transitions.

机译:纠缠熵和纠缠哈密顿量是相和相变的表征。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we study the entanglement properties of quantum systems to characterize quantum phases and phase transitions. We focus on the free fermion lattice systems and we use numerical calculation to verify our ideas. Behavior of the entanglement entropy is used to distinguish different phases, in addition the area law of the entanglement entropy is studied. We propose that beside the entanglement entropy, there is physical information in the entanglement Hamiltonian of the reduced density matrix of a chosen subsystem. We verify our ideas by studying different free fermion models. The verification is made by comparing the results we obtain from studying the behavior of the entanglement Hamiltonian with the known previous results.;As starting point, to show that entanglement Hamiltonian eigenmodes have physical information, we employ the XX spin chain model. Real space renormalization group method predicts that the ground state is the product state of singlet states and thus those singlet that cross the boundary make the entanglement. We use the entanglement Hamiltonian to show that its single particle eigenmode shows the location of the entangled singlet spins. This is done in the case of ground state at T = 0. We also studied the entanglement properties of the highly excited eigenstate of the system. We use modified version of real space renormalization group for excited state and we show that in T ≠ 0 case where singlet and triplet state with total SZ = 0 make entanglement, entanglement Hamiltonian eigenmode shows the location of the entangled spins. We distinguish one eigenmode of the entanglement Hamiltonian as the maximally entangled mode. This mode corresponds to the smallest entanglement energy and thus contributes the most to the entanglement entropy. In addition, we use two one-dimensional free fermion models, namely the random dimer model and power law random banded model to show that for a localized-delocalized phase transition, behavior of the maximally entangled mode is similar to the behavior of the eigenmode of the original Hamiltonian at the Fermi level. We quantify this by comparing their overlaps and the inverse participation ratio of eigenmodes.;The behavior of the entanglement entropy as a well-known quantity is studied in disordered free fermion models. In random dimer model and power law random banded model where the correlated disorder yields to the localized-delocalized phase transition, we show that entanglement entropy saturates in localized phase and diverges in delocalized phase. In addition it violates the area law in delocalized phase. Entanglement entropy of Anderson model in one, two, and three dimensions is also studied and we observed that area law is correct even for the delocalized phase of the Anderson model in three dimensions, provided that system size is larger than the mean free path. The study of a single impurity, one non-zero on-site energy, in the Anderson model is also examined. We concluded that this single impurity changes only the subleading term of the entanglement entropy which is proportional to the inverse of the subsystem size. This subleading term has non-oscillation and oscillating part.
机译:在本文中,我们研究了量子系统的纠缠特性以表征量子相和相变。我们关注自由费米子晶格系统,并使用数值计算来验证我们的想法。纠缠熵的行为被用来区分不同的相位,此外还研究了纠缠熵的面积定律。我们提出,除了纠缠熵之外,所选子系统的密度矩阵的纠缠哈密顿量中还包含物理信息。我们通过研究不同的自由费米子模型来验证我们的想法。通过将研究纠缠哈密顿量的行为所得结果与先前已知的结果进行比较,可以进行验证。作为起点,为了证明纠缠哈密顿量本征模具有物理信息,我们采用XX自旋链模型。实空间重归一化组方法预测,基态是单重态的乘积态,因此那些越过边界的单重态会产生纠缠。我们使用纠缠哈密顿量表明其单粒子本征模显示了纠缠的单重态自旋的位置。这是在T = 0的基态的情况下完成的。我们还研究了系统的高激发本征态的纠缠特性。我们将真实空间重整化组的修改版本用于激发态,并且表明在T≠0的情况下,单峰态和三态态的总SZ = 0发生纠缠,纠缠哈密顿本征模式显示了纠缠自旋的位置。我们将纠缠哈密顿量的一个本征模作为最大纠缠模。该模式对应最小的纠缠能量,因此对纠缠熵贡献最大。此外,我们使用两个一维自由费米子模型,即随机二聚体模型和幂律随机带状模型,来证明对于局部离域相变,最大纠缠模态的行为类似于特征模态的行为。费米一级的原始哈密顿量。我们通过比较它们的重叠和本征模的逆参与比来对此进行量化。;在无序自由费米子模型中研究了纠缠熵作为众所周知量的行为。在随机二聚体模型和幂律随机带状模型中,相关的无序产生到局部-离域相变,我们表明纠缠熵在局部相中饱和而在离相中发散。此外,它在移居阶段违反了区域法。还研究了Anderson模型在一维,二维和三维中的纠缠熵,并且我们观察到,即使系统尺寸大于平均自由程,即使对于Anderson模型在3维中的离域阶段,面积定律也是正确的。还研究了在安德森模型中对单一杂质(一种非零现场能量)的研究。我们得出的结论是,该单一杂质仅改变了纠缠熵的次导项,该项与子系统大小的倒数成比例。该次要术语具有非振荡和振荡部分。

著录项

  • 作者

    Pouranvari, Mohammad.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Quantum physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:47:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号