首页> 外文学位 >Numerical simulation of mass and heat transfer processes in a micro heat engine.
【24h】

Numerical simulation of mass and heat transfer processes in a micro heat engine.

机译:微型热机中传质和传热过程的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

A innovative micro heat engine design has been developed at the MEMS laboratory of Washington State University. The micro heat engine, dubbed the P3 micro engine, is an attractive candidate for MEMS power. The mass and heat transfer are the controlling processes of this micro heat engine in the conversion of thermal energy into mechanical and then electrical energy. In this study, two-dimensional axisymmetric models for the mass and heat transfer processes in the micro heat engine are presented. A computer code based on the numerical models and the control volume method has been developed and used to investigate the effects of both the geometric and operating parameters on the cycle characteristics and cycle efficiency. A typical set of parameters is chosen first, and the results are then used as a basis for comparison to investigate each of the operating and geometric parameters on the cycle characteristics and cycle efficiency by giving one parameter a small change around its value in the base case and keeping other parameters fixed.; Detailed numerical results are presented, and the effects of each of the operating and geometric parameters on the mass and heat transfer processes and the cycle efficiency are discussed. For the base case, a single engine delivers a first law efficiency of 0.622% and a second law efficiency 25.9%. The parametric analysis shows that the thermal efficiency of the micro heat engine is very sensitive to the geometric parameters, especially the radii of source ring and the PZT membrane. Increasing the radius of the PZT membrane while decreasing the radius of the source ring is an effective way to improve the thermal efficiency of the micro heat engine. Given the geometric parameter, the compression deflection has the most significant effect on the thermal efficiency. Numerical results also shows that the introduction of an insulation coating on the membranes leads to more than 50% improvement in the thermal efficiency. By cascading the unit micro heat engines substantial efficiency gains may be realized. A ten-engine cascade results a thermal efficiency increase from 1.0% to 9.6%.
机译:华盛顿州立大学的MEMS实验室已经开发出创新的微热引擎设计。微型热引擎称为P3微型引擎,是MEMS功率的有吸引力的候选者。质量和热传递是这种微型热机的控制过程,将热能转换为机械能,然后转换为电能。在这项研究中,为微型热机中的传质和传热过程提供了二维轴对称模型。已经开发了基于数值模型和控制量方法的计算机代码,并用于研究几何参数和操作参数对循环特性和循环效率的影响。首先选择一组典型的参数,然后将结果用作比较的基础,以通过在基本情况下为其参数赋予一个很小的变化来比较每个操作参数和几何参数的循环特性和循环效率并保持其他参数固定。给出了详细的数值结果,并讨论了每个操作和几何参数对传质和传热过程以及循环效率的影响。对于基本情况,单个引擎的第一定律效率为0.622%,第二定律效率为25.9%。参数分析表明,微型热机的热效率对几何参数特别是源环和PZT膜的半径非常敏感。增加PZT膜片的半径,同时减小源环的半径,是提高微热机热效率的有效途径。给定几何参数,压缩变形对热效率的影响最大。数值结果还表明,在膜上引入绝缘涂层可导致热效率提高50%以上。通过级联单元微型热机,可以实现实质性的效率提高。十台发动机的级联导致热效率从1.0%提高到9.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号