首页> 外文学位 >Automated neural network-based instrument validation system.
【24h】

Automated neural network-based instrument validation system.

机译:基于自动化神经网络的仪器验证系统。

获取原文
获取原文并翻译 | 示例

摘要

In a complex control process, instrument calibration is periodically performed to maintain the instruments within the calibration range, which assures proper control and minimizes down time. Instruments are usually calibrated under out-of-service conditions using manual calibration methods, which may cause incorrect calibration or equipment damage. Continuous in-service calibration monitoring of sensors and instruments will reduce unnecessary instrument calibrations, give operators more confidence in instrument measurements, increase plant efficiency or product quality, and minimize the possibility of equipment damage during unnecessary manual calibrations.;In this dissertation, an artificial neural network (ANN)-based instrument calibration verification system is designed to achieve the on-line monitoring and verification goal for scheduling maintenance. Since an ANN is a data-driven model, it can learn the relationships among signals without prior knowledge of the physical model or process, which is usually difficult to establish for the complex non-linear systems. Furthermore, the ANNs provide a noise-reduced estimate of the signal measurement. More importantly, since a neural network learns the relationships among signals, it can give an unfaulted estimate of a faulty signal based on information provided by other unfaulted signals; that is, provide a correct estimate of a faulty signal. This ANN-based instrument verification system is capable of detecting small degradations or drifts occurring in instrumentation, and preclude false control actions or system damage caused by instrument degradation.;In this dissertation, an automated scheme of neural network construction is developed. Previously, the neural network structure design required extensive knowledge of neural networks. An automated design methodology was developed so that a network structure can be created without expert interaction. This validation system was designed to monitor process sensors plant-wide. Due to the large number of sensors to be monitored and the limited computational capability of an artificial neural network model, a variable grouping process was developed for dividing the sensor variables into small correlated groups which the neural networks can handle. A modification of a statistical method, called Beta method, as well as a principal component analysis (PCA)-based method of estimating the number of neural network hidden nodes was developed. Another development in this dissertation is the sensor fault detection method. The commonly used Sequential Probability Ratio Test (SPRT) continuously measures the likelihood ratio to statistically determine if there is any significant calibration change. This method requires normally distributed signals for correct operation. In practice, the signals deviate from the normal distribution causing problems for the SPRT. A modified SPRT (MSPRT) was developed to suppress the possible, intermittent alarms initiated by spurious spikes in network prediction errors.;These methods were applied to data from the Tennessee Valley Authority (TVA) fossil power plant Unit 9 for testing. The results show that the average detectable drift level is about 2.5% for instruments in the boiler system and about 1% in the turbine system of the Unit 9 system. Approximately 74% of the process instruments can be monitored using the methodologies developed in this dissertation.
机译:在复杂的控制过程中,会定期执行仪器校准,以将仪器保持在校准范围内,从而确保适当的控制并最大程度地减少停机时间。仪器通常在使用条件下使用手动校准方法进行校准,这可能会导致错误的校准或设备损坏。对传感器和仪器进行持续的在线校准监控将减少不必要的仪器校准,使操作员对仪器测量更有信心,提高工厂效率或产品质量,并在不必要的手动校准过程中将设备损坏的可能性降到最低。基于神经网络(ANN)的仪器校准验证系统旨在实现在线监测和验证目标,以安排维护时间。由于人工神经网络是一种数据驱动的模型,因此无需事先了解物理模型或过程即可了解信号之间的关系,而这通常对于复杂的非线性系统而言很难建立。此外,人工神经网络可提供信号测量结果的降噪估计。更重要的是,由于神经网络了解信号之间的关系,因此它可以基于其他未故障信号提供的信息来对故障信号进行无故障估计。也就是说,提供对故障信号的正确估计。这种基于人工神经网络的仪器验证系统能够检测仪器中发生的细微变化或漂移,并防止由于仪器退化而引起的错误控制动作或系统损坏。;本文开发了一种自动化的神经网络构建方案。以前,神经网络结构设计需要广泛的神经网络知识。开发了一种自动设计方法,以便无需专家干预即可创建网络结构。该验证系统旨在监控整个工厂的过程传感器。由于要监视的传感器数量众多,并且人工神经网络模型的计算能力有限,因此开发了一种变量分组过程,用于将传感器变量分为神经网络可以处理的小相关组。开发了一种对统计方法(称为Beta方法)的修改,以及一种基于主成分分析(PCA)的估计神经网络隐藏节点数量的方法。本文的另一发展是传感器故障检测方法。常用的序贯概率比测试(SPRT)连续测量似然比,以统计学方式确定是否存在任何重大的校准变化。此方法需要正态分布的信号才能正确操作。实际上,信号偏离正态分布会导致SPRT出现问题。开发了一种改进的SPRT(MSPRT)以抑制由网络预测错误的虚假峰值引发的可能的间歇性警报。这些方法应用于田纳西河谷管理局(TVA)化石电厂9号机组的数据进行测试。结果表明,在9号机组系统中,锅炉系统中仪器的平均可检测漂移水平约为2.5%,涡轮机系统中的平均可检测水平约为1%。使用本文开发的方法可以监测约74%的过程仪器。

著录项

  • 作者

    Xu, Xiao.;

  • 作者单位

    The University of Tennessee.;

  • 授予单位 The University of Tennessee.;
  • 学科 Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号