首页> 外文学位 >Liquid composite molding of tackified fiber reinforcement: Performing and void removal.
【24h】

Liquid composite molding of tackified fiber reinforcement: Performing and void removal.

机译:增粘纤维增强材料的液体复合成型:执行和去除空隙。

获取原文
获取原文并翻译 | 示例

摘要

Both preforming and void removal have been studied in order to study the liquid composite molding process. Tackified textile fiber preforms are used widely in resin transfer molding (RTM) to produce aerospace-grade composite parts. To optimize the preforming process, a thorough understanding of many important material and process issues, such as fabric formability, preform dimension control, preform permeability, fiber wetting, and tackifier compatibility with the matrix resin, is essential. These issues are investigated based on a commercial tackifier (PT 500 from 3M). The results show that tackifier concentration, tackifier powder size and the application conditions all play important roles in governing the moldability of tackified fiber preforms. When applying the PT 500 tackifier onto the fabric, the location of the tackifier should be outside the fiber tows in order to achieve better preform compaction and interlayer adhesion. This can be achieved by applying and preforming the tackifier and the tackified fabrics at low temperatures (e.g. less than 82°C). The powder size between 106--250 mum seems to be a good choice because it provides good preforming characteristics and is easier to handle. It is also found that the AS4-6k, 5 harness fabric has much less springback than the IM7-12k, 5 harness fabric during preforming because its sizing functions like a tackifier.; The location of the tackifier in the preform affects the preform permeability. If most of the tackifier stays inside the fiber tows, preform permeability may increase greatly. This can be achieved by quickly heating the tackified preform to a higher temperature (e.g. 160°C) before mold filling. If the tackifier in the preform remains ungelled before heating, the high temperature would reduce its viscosity significantly and the capillary force may pull the tackifier into the fiber tows. Tackifier inside the fiber tows, however, tends to cause in more severe void formation problem.; It is found that a fiber preform with tackifier tends to have more severe void formation problem during mold filling than that without any tackifier. Voids are detrimental to both the surface quality and the mechanical properties of the molded composites. To minimize the void problem, a thorough understanding of void formation and removal in the molding process is need. The void removal mechanism has been studied both by observing the phenomena by flow visualization in real fiber reinforcement and systematic study in microfluidic channels. Photolithography technique is used in fabricating rectangular flow channels in micron size. Both the bubble mobility and the snap-off of bubbles are studied. It is found that the mobility of the bubble is can be correlated by the Young-Laplace equation. The time required for bubble snap off is governed by the tube capillary number based on the gas velocity by an order of -0.64.
机译:为了研究液体复合成型过程,已经研究了预成型和去除空隙。增粘的纺织纤维预成型件广泛用于树脂传递模塑(RTM)中,以生产航空级复合材料零件。为了优化预成型工艺,必须对许多重要的材料和工艺问题有透彻的了解,例如织物成型性,预成型件尺寸控制,预成型件渗透性,纤维润湿性以及增粘剂与基体树脂的相容性。基于商业增粘剂(3M的PT 500)对这些问题进行了研究。结果表明,增粘剂浓度,增粘剂粉末尺寸和使用条件均在控制增粘纤维预成型件的成型性方面起着重要作用。将PT 500增粘剂施加到织物上时,增粘剂的位置应在纤维束的外面,以实现更好的预成型坯压实和层间粘合。这可以通过在低温(例如低于82℃)下施加和预成型增粘剂和增粘的织物来实现。粉末大小在106--250微米之间似乎是一个不错的选择,因为它具有良好的预成型特性并且易于处理。还发现,在预成型期间,AS4-6k,5线束织物的回弹力要比IM7-12k,5线束织物的回弹力低得多,因为它的上浆功能类似于增粘剂。增粘剂在预成型坯中的位置会影响预成型坯的渗透性。如果大多数增粘剂留在纤维束中,则瓶坯的渗透性可能会大大提高。这可以通过在模子填充之前将增粘的预型件快速加热到较高的温度(例如160℃)来实现。如果预成型件中的增粘剂在加热前保持脱胶状态,则高温会显着降低其粘度,毛细作用力可能会将增粘剂拉入纤维束中。然而,纤维束内部的增粘剂往往导致更严重的空隙形成问题。已经发现,与不添加增粘剂的纤维预成型件相比,具有增粘剂的纤维预成型件在模具填充期间趋于具有更严重的空隙形成问题。空隙对模制复合材料的表面质量和机械性能均有害。为了使空隙问题最小化,需要对模制过程中空隙的形成和去除有透彻的了解。已经通过在真实纤维增强中的流动可视化观察现象以及在微流体通道中的系统研究来研究空隙去除机理。光刻技术用于制造微米尺寸的矩形流道。研究了气泡的流动性和气泡的破裂。发现气泡的迁移率可以通过杨-拉普拉斯方程相关。气泡破裂所需的时间由基于气体速度的-0.64数量级的管毛细管数决定。

著录项

  • 作者

    Shih, Chih-Hsin.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Chemical.; Operations Research.; Textile Technology.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 263 p.
  • 总页数 263
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号