首页> 外文学位 >Optimal and Robust Control for Synchronization of Networked Multi-Agent Systems
【24h】

Optimal and Robust Control for Synchronization of Networked Multi-Agent Systems

机译:网络多Agent系统同步的最优鲁棒控制

获取原文
获取原文并翻译 | 示例

摘要

Synchronized multi-agent systems can perform complex tasks often with precision more than what humans can achieve. In teleoperation, brain-computer interface (BCI) systems, preciseness in motion of the various coordinated axes of the robot is key for successful execution of tasks. However, uncertainties, disturbances, unknown environment and nonlinearities such as communication delay remain major issues and the solution to these problems is open. For human-in-loop systems like telesurgery, the additional delay from human reaction time apart from communication signal delay needs to be considered for effective control design of such time delay systems. Additionally, teleoperated robots are mostly battery-powered and, therefore, energy consumption rate in relation to the work done is critical. It is, therefore, imperative to design control systems considering some performance index.;In this research, a new method is presented to synchronize n-agents optimally considering a performance index. This provides an analytical way to optimally address the multi-agent synchronization problem. In other words, the method aims not just looking at stabilizing our system but considering cost to achieve that goal. Another issue is, to design control for our systems, the system is typically modeled from first principles of physics, using appropriate assumptions and simplifications. The final model, therefore, may not adequately capture the true physical system. There are also issues of environmental changes, changes in system dynamics, structural damages to the system. These are usually not considered in general control systems design. Consequently, it is important to design controls that can address these uncertain changes to ensure stable, secure and smooth operation under all conditions.;Sensors read actuation information and send feedback signals to controllers for correction. Sensor reaction time and network communication introduce communication delay in the controlled system. Communication delay has a detrimental effect on the performance of controlled systems degrading performance, and even resulting in instabilities. Time delay term results in an infinite number of roots of the characteristic equation making it difficult to check stability and design stabilizing controller. The research presents a method of designing controllers considering communication delay.;First, an optimal synchronization controller is designed using Linear Quadratic Regulation. Modeling and simulations are done in MATLAB/Simulink and experiments are performed to validate the results. The typical optimal controller successfully stabilizes but shows large tracking error, a PID-controller is therefore integrated in the optimal synchronization controller to reduce the error significantly.;Secondly, synchronized model reference adaptive controller is also designed and simulated through MATLAB/Simulink and validated with an experiment. External load disturbance is introduced through eccentric loading of one agent and the adaptive performance is evaluated.;Thirdly, effects of communication delay on Internet-based teleoperation of carts using UDP protocol is investigated with two quanser cart systems and a suitable controller designed with MATLAB/Simulink is used to simulate the controller and validated with an experiment through the quanser cart systems.;Lastly, a control design investigating the effects of communication delay on systems with brain-computer-interface (BCI) or human-in-loop is conducted using the WIDOWX arm robot from Trossenrobotics. Robot Operating Systems (ROS), an open source software working on Ubuntu, a linux-based operating system is used for this research.;Precision in multi-agent synchronization systems ensures effective synchronization, transient oscillations which is undesired affects the degree of preciseness. To reduce the magnitude of the oscillation and ensure quick decay to steady-state with adaptive capabilities that ensures continuous desired output characteristics, a new adaptive synchronization technic with a synchronization controller is proposed. The approach ensures approximately 99.3% reduction in synchronization error compared to synchronization without the controller. It also ensures 97--99.3% improvement in disturbance rejection properties. The continuous pole place is used to design a controller with the ability to stabilize the agents under the effects of time delay. Experiment show stabilized output with the controller and an instable output without the controller. The results from these are geared towards effective coordination of brain-controlled limbs and teleoperation. A typical example is the application in motor rehabilitation after stroke by decoding movement attempts. The oscillatory brain signals move supporting robotic/orthotic devices or virtual hands to close the feedback loop. Experiment with the robot arm shows the effect of human reaction delay on the control system.
机译:同步多主体系统通常可以以比人类可以实现的精度更高的精度执行复杂的任务。在遥操作,脑机接口(BCI)系统中,机器人各个协调轴的运动精确度是成功执行任务的关键。然而,不确定性,干扰,未知环境以及诸如通信延迟之类的非线性仍然是主要问题,并且解决这些问题的方法是开放的。对于诸如远程外科手术之类的人在环系统,对于这种时间延迟系统的有效控制设计,除了通信信号延迟之外,还需要考虑来自人类反应时间的额外延迟。此外,远程操作机器人大多由电池供电,因此,与完成的工作相关的能耗率至关重要。因此,必须在设计控制系统时考虑一些性能指标。在本研究中,提出了一种新的方法,该方法可以在考虑性能指标的情况下优化n代理的最佳同步。这提供了一种分析方法,可以最佳地解决多主体同步问题。换句话说,该方法不仅旨在稳定我们的系统,而且还考虑了实现该目标的成本。另一个问题是,要为我们的系统设计控制,通常使用适当的假设和简化方法,根据物理学的第一原理对系统进行建模。因此,最终模型可能无法充分捕获真实的物理系统。还存在环境变化,系统动态变化,系统结构损坏等问题。一般控制系统设计中通常不考虑这些因素。因此,重要的是设计能够解决这些不确定变化的控件,以确保在所有条件下都能稳定,安全和平稳地运行。传感器读取致动信息并将反馈信号发送至控制器进行校正。传感器反应时间和网络通信会在受控系统中引入通信延迟。通信延迟会对受控系统的性能产生不利影响,从而降低性能,甚至导致不稳定。时延项导致特征方程式的根数无限,从而难以检查稳定性和设计稳定控制器。研究提出了一种考虑通信时延的控制器设计方法。首先,利用线性二次调节设计了一种最优的同步控制器。在MATLAB / Simulink中进行建模和仿真,并进行实验以验证结果。典型的最优控制器能够成功稳定但跟踪误差较大,因此将PID控制器集成到最优同步控制器中以显着减少误差。其次,还通过MATLAB / Simulink设计和仿真了同步模型参考自适应控制器,并进行了验证。一个实验。通过一个代理的偏心加载来引入外部负载扰动,并评估其自适应性能。第三,研究了两个Quadser推车系统以及使用MATLAB / MATLAB设计的合适控制器对通信延迟对基于UDP协议的基于Internet的推车远程操作的影响。 Simulink用于模拟控制器,并通过定量车系统进行了实验验证。最后,使用以下方法进行了控制设计,以研究通信延迟对具有脑机接口(BCI)或人在环系统的系统的影响Trossenrobotics的WIDOWX手臂机器人。机器人操作系统(ROS)是在Ubuntu上运行的开源软件,是一种基于Linux的操作系统。;多主体同步系统中的精度可确保有效的同步,不希望有的瞬态振荡会影响精度。为了减少振荡的幅度并通过具有确保连续所需输出特性的自适应功能,确保快速衰减到稳态,提出了一种具有同步控制器的新型自适应同步技术。与没有控制器的同步相比,该方法可确保同步误差降低约99.3%。它还可以确保抗扰度提高97--99.3%。连续极点用于设计一种控制器,该控制器具有在时间延迟的影响下稳定代理的能力。实验表明,带控制器的输出稳定,不带控制器的输出不稳定。这些结果旨在有效控制大脑控制的四肢和远距手术。典型示例是通过解码运动尝试在中风后运动康复中的应用。振荡的大脑信号移动支持的机器人/矫形设备或虚拟手以闭合反馈回路。机械手臂的实验显示了人类反应延迟对控制系统的影响。

著录项

  • 作者

    Okore-Hanson, Theophilus.;

  • 作者单位

    North Carolina Agricultural and Technical State University.;

  • 授予单位 North Carolina Agricultural and Technical State University.;
  • 学科 Engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号