首页> 外文学位 >Use of improved far-field boundary conditions to compute external flows on reduced domains.
【24h】

Use of improved far-field boundary conditions to compute external flows on reduced domains.

机译:使用改进的远场边界条件来计算缩小域上的外部流。

获取原文
获取原文并翻译 | 示例

摘要

Viscous incompressible flow past a finite axisymmetric body in an unbounded domain is considered computationally. The domain is divided into viscous interior and inviscid exterior regions by a paraboloidal artificial boundary, and is truncated at some distance downstream. We develop conditions on this artificial boundary that allow an analytical solution of the potential flow equations, the known asymptotic form of the Navier-Stokes equations, in the inviscid region to be matched to a numerical solution of the full Navier-Stokes equations in the viscous region. The domain convergence and efficiency of the approach are compared to currently-used far-field boundary conditions for flows past a sphere and a finite paraboloidal body of revolution. We show that our conditions give exponential convergence with respect to upstream domain length, which is much faster than that for common alternatives, allowing a substantially reduced computational domain.; Our computational results for flow past a sphere are in excellent agreement with previous computations and empirical correlations of experimental and computational results.; We have also used this computational approach to study, for the first time, flow past a convex axisymmetric body formed by a finite paraboloid with a paraboloidal surface closing the aperture. Converged flows were computed for three different aspect ratios up to a Reynolds number (Re) of 200. For sufficiently small Re, there is no separation. For an intermediate range of Re, the separation point moves from the rear stagnation point towards the edge of the body as Re increases. Beyond some Re, the computed separation circle lies between the edge and nearest grid point, for all grid spacings considered. The length of the separated flow region varies approximately with a fractional power of the logarithm of the Reynolds number. The computational advantages of the present approach are demonstrated by comparing memory usage and runtime for solutions of comparable accuracy. When the system of nonlinear algebraic equations is solved by Newton iteration, memory usage and runtime are reduced by about 70% compared to computations using Neumann and free-stream Dirichlet boundary conditions.
机译:在无界域中经过有限轴对称体的粘性不可压缩流在计算上被认为是。该区域通过抛物面人工边界分为粘性内部区域和不粘稠的外部区域,并在下游一定距离处被截断。我们在此人工边界上开发条件,以使无粘性区域中的潜在流动方程(即已知的Navier-Stokes方程的渐近形式)的解析解与粘性的完整Navier-Stokes方程的数值解匹配区域。该方法的域收敛性和效率与流过一个球体和有限抛物面旋转体的流的当前远场边界条件进行了比较。我们证明了我们的条件相对于上游域长度给出了指数收敛,这比普通替代方法快得多,从而大大减少了计算域。我们通过球体的计算结果与先前的计算以及实验和计算结果的经验相关性非常一致。我们还首次使用了这种计算方法来研究流过由有限抛物面形成的凸轴对称体的流动,该抛物面的抛物面封闭了孔。计算了三种不同长宽比的收敛流,直到雷诺数( Re )达到200。对于足够小的 Re ,没有分离。对于 Re 的中间范围,当 Re 增加时,分离点将从后停滞点向身体边缘移动。对于所有考虑的网格间距,除某些 Re 外,计算出的分隔圆位于边缘和最近的网格点之间。分离的流动区域的长度大约随雷诺数的对数的分数次幂而变化。通过比较内存使用率和运行时间以得到可比较精度的解决方案,可以证明本方法的计算优势。通过牛顿迭代求解非线性代数方程组时,与使用Neumann和自由流Dirichlet边界条件进行的计算相比,内存使用量和运行时间减少了约70%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号