首页> 外文学位 >Energy and task management in energy harvesting wireless sensor networks for structural health monitoring.
【24h】

Energy and task management in energy harvesting wireless sensor networks for structural health monitoring.

机译:用于结构健康监测的能量收集无线传感器网络中的能量和任务管理。

获取原文
获取原文并翻译 | 示例

摘要

Energy harvesting sensor nodes reduce the need for post-deployment physical human interaction by using environmental power and wireless communication; however, they must adapt performance to accommodate the energy availability. This thesis presents three application-independent algorithms that adapt performance based on energy availability for steady and external trigger state conditions. Steady state operation describes the periodic execution of a set of tasks on the system. For steady state operation, a method is presented that adapts the execution rate to achieve high performance while maintaining sufficient energy. External trigger state operation occurs when an external device makes a request to the system. For external trigger state operation, algorithms are used to determine the execution time, energy consumption and performance of the request. These methods are applied to SHiMmer, a wireless, energy-harvesting structural health monitoring platform. Unlike other sensor systems that periodically monitor a structure and route information to a base station, SHiMmer is designed to acquire data using active sensing and process it locally before communicating with an external device. Results from this application demonstrate the controller's ability to adapt at runtime and maintain sufficient energy. Steady state results show that the execution rate changes with weather conditions. On average, the execution rate on a sunny day increases by 62% compared to the rate on cloudy days. External trigger state results show that processing significantly affects the efficiency of a structural health monitoring system; specifically, complex processing requires 17 times less execution time and 2.5 times less energy than transmitting raw data.
机译:能量收集传感器节点通过使用环境电源和无线通信减少了部署后物理人机交互的需求;但是,它们必须调整性能以适应能源可用性。本文提出了三种独立于应用的算法,这些算法基于能量的可用性来适应稳态和外部触发状态条件下的性能。稳态操作描述了系统上一组任务的定期执行。对于稳态操作,提出了一种在保持足够能量的同时调整执行速度以实现高性能的方法。当外部设备向系统发出请求时,将发生外部触发状态操作。对于外部触发状态操作,使用算法确定执行时间,能耗和请求性能。这些方法应用于SHiMmer,这是一种无线的能量收集结构健康监测平台。与其他定期监视结构并将信息路由到基站的传感器系统不同,SHiMmer被设计为使用主动感应获取数据并在与外部设备进行通信之前本地对其进行处理。该应用程序的结果证明了控制器在运行时进行适应并保持足够能量的能力。稳态结果表明执行速度随天气情况而变化。与阴天相比,晴天的执行率平均提高62%。外部触发状态结果表明,处理过程显着影响结构健康监控系统的效率;特别是,复杂的处理所需的执行时间比传输原始数据少17倍,而能源消耗少2.5倍。

著录项

  • 作者

    Steck, Jamie Bradley.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Computer Science.
  • 学位 M.S.
  • 年度 2009
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

  • 入库时间 2022-08-17 11:37:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号