首页> 外文学位 >Computational study of vortex shedding about slender bodies.
【24h】

Computational study of vortex shedding about slender bodies.

机译:细长体涡旋脱落的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

The flow about slender, pointed bodies can be characterized by different states with angle of attack. At moderate-to-high angles of attack (α ≈ 40°), a steady, asymmetric vortex pattern develops along the body, leading to a net lateral force. At higher angles of attack (α ≈ 60°), the aft-end of the body develops an unsteady von Kármán shedding. As the angle of attack approaches 90°, the entire body length exhibits a time-dependent vortex shedding pattern. The current work develops numerical methods capable of simulating both the steady and unsteady vortex shedding about slender bodies at sub-scale (low Mach number, high laminar Reynolds number) test conditions. At these conditions a large database of experimental and numerical results exists for asymmetric vortex shedding. Emphasis is placed upon minimizing the computational cost for simulating three-dimensional, unsteady vortex shedding without sacrificing accuracy. Requirements for the crossflow resolution, time integration, and viscous stress modeling are developed. These methods are utilized to examine the physical mechanisms involved in flows about pointed bodies at angle of attack. The development of an asymmetric vortex pattern via a convective instability mechanism is investigated using tip bumps, surface roughness, and tip curvature. A model for the initiation of an asymmetric flow state from tip perturbations is presented. The development of Von Kármán shedding on a semi-infinite pointed body is also studied. Numerical experiments are performed to determine whether the region of unsteady shedding on the aft-end of a body at angle of attack stems from a convective or absolute instability of the flow. The interactions between the regions of steady, asymmetric and unsteady von Kármán vortex shedding are examined.
机译:细长的,尖锐的物体周围的流动的特征是具有迎角的不同状态。在中等到高的迎角(α≈ 40°)处,沿着身体会形成稳定的不对称涡旋图案,从而导致净侧向力。在较大的迎角(α≈ 60°)下,身体的尾端会出现不稳定的vonKármán脱落。当迎角接近90°时,整个身体呈现出随时间变化的涡旋脱落模式。当前的工作开发了数值方法,该方法能够模拟子尺度(低马赫数,高层状雷诺数)测试条件下细长物体的稳态和非稳态涡旋脱落。在这些条件下,存在大量的实验和数值结果数据库,可用于非对称涡旋脱落。重点是在不牺牲精度的情况下最小化用于模拟三维非恒定涡旋脱落的计算成本。开发了对错流分辨率,时间积分和粘性应力建模的要求。这些方法被用来检查以尖锐角度围绕尖锐物体的流动所涉及的物理机制。研究了通过对流不稳定性机制通过不对称涡旋图案的发展,其中利用了尖端凸起,表面粗糙度和尖端曲率。提出了一种从尖端扰动引发不对称流动状态的模型。还研究了VonKármán在半无限尖形物体上脱落的发展。进行数值实验以确定在身体的尾部以攻角不稳定流失的区域是由于流动的对流还是绝对不稳定性引起的。研究了稳态,非对称和非稳态vonKármán涡旋脱落区域之间的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号