首页> 外文学位 >Mechanisms of arsenic detoxification.
【24h】

Mechanisms of arsenic detoxification.

机译:砷解毒的机制。

获取原文
获取原文并翻译 | 示例

摘要

My Ph.D. thesis focuses on mechanisms of arsenic detoxification in bacteria, is centered on three major objectives, mainly, the metalloid-stimulated ArsA ATPase, and arsenite-specific transporter, Acr3.;Objective 1: Mutagenesis study of deviant Walker A motif of ArsA ATPase. ArsA is composed of homologous N-terminal (A1) and C-terminal (A2) halves that are connected by a short linker. Each contains a nucleotide binding domain (NBD), and both NBDs are required for ATPase activity and metalloid transport. The metalloid binding domain located at the A1-A2 interface diametrically opposite to the NBDs modulates ATPase activity. Two stretches of residues, D142TAPTGH148T in A1 and D447TAPTGH 453T in A2, physically connect the metalloid binding domain to the A1 and A2 NBDs, respectively. The metalloid binding domain is composed of three metalloid atoms, each of which is coordinated by two protein ligands, one of which is donated by A1 and the other by A2. Thus the metalloid atoms serve as the "molecular glue" that brings the two halves of the protein together, activating catalysis. However, it is not clear that how the NBDs interact with each other during activated catalysis. To answer this question, I focused on the conserved lysine residues (Lys16 and Lys335) in both NBDs, which have been suggested to play a role in subunit interaction in the homologue NifH.;Alteration of Lys16 did not show any significant sensitivity to metalloids, but Lys335 mutants were considerably less resistant to arsenite than wild type. Azido-ATP labeling studies indicated that while both K16Q and K335Q bind nucleotide at both NBD1 and NBD2, the binding affinity decreases in the order: wild-type>K16Q>K335Q. More interestingly, while K16Q hydrolyzes ATP at either NBD1 or NBD2, K335Q ArsA does not exhibit ATP hydrolysis at either site. Based on the above data, we propose that akin to NifH, Lys335 is involved in charge stabilization of the bound nucleotide at NBD1, and is consequently involved in the activation of ATPase activity. Lys16 is probably slightly distant to have a strong electrostatic interaction with the negative charge of the bound nucleotide at NBD2, and consequently, alteration of Lys16 does not have a drastic effect on ATPase activity. A similar phenomenon was observed with the conserved aspartates, Asp142 and Asp447, located in A1 and A2 signal transduction domain, respectively. While alteration of Asp142 resulted in loss of Mg2+ binding to NBD1, Asp447 was found not to be nearly as critical for Mg2+ binding as Asp142.;Objective 2: Characterization of ArsA1/2 from the novel ars operon in Alkaliphilus metalliredigens QYMF. Much less is known about the second family of arsenite carriers, Acr3. Members of this family are found in bacteria, archaea and fungi. The identification of the novel ars operon in A. metalliredigens QYMF which contains arsA1, arsA2, and Amacr3 is thought provoking. This is the first time that, instead of arsB, acr3 is found to coexist with arsA in an operon. I have cloned this novel operon and showed that it confers arsenite resistance upon expression in an arsenic-sensitive strain of E. coli. I also determined that the purified A. metalliredigens ArsA1-ArsA2 complex shares similar characteristics with its R773 homologue.;Objective 3: Membrane topology of the Acr3 arsenite transporter from Alkaliphilus metalliredigens QYMF. To date however, no mechanistic data is available on any member of the Acr3 family. In order to be able to rationally study the function of a transport protein, it is important to have a basic understanding of the structure of the transporter. Here I use scanning cysteine accessibility mutagenesis (SCAM) to study the membrane topology of AmAcr3. Thirty-four single cysteine were introduced by mutagenesis in "cysteineless" (C27/91S) backbone, and the sideness of these cysteine were probed with membrane permeable and membrane impermeable thiol-specific reagents, 3-(N-maleimidylpropionyl) biocytin (Biotin maleimide or BM) and 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS). The data suggested that both the N- and the C-termini are located in the cytoplasm, and a 10-TM model was proposed. More over, energistics study using everted membrane vesicles, it showed that both DeltapH and Deltapsiare required for As (III) transport.
机译:我的博士学位本文主要研究细菌中砷的解毒机理,主要围绕三个主要目标,即准金属刺激的ArsA ATPase和亚砷酸盐特异性转运蛋白Acr3 。;目的1:ArsA ATPase异常Walker A的诱变研究。 ArsA由通过短连接子连接的同源N末端(A1)和C末端(A2)半部分组成。每个都包含一个核苷酸结合结构域(NBD),并且两个NBD都是ATPase活性和准金属转运所必需的。与NBD截然相反的A1-A2界面上的准金属结合结构域调节ATPase活性。两段残基(A1中的D142TAPTGH148T和A2中的D447TAPTGH 453T)分别将准金属结合结构域与A1和A2 NBD物理连接。准金属结合域由三个准金属原子组成,每个准金属原子由两个蛋白质配体配位,其中一个由A1捐赠,另一个由A2捐赠。因此,准金属原子充当“分子胶”,将蛋白质的两半聚集在一起,从而激活催化作用。然而,尚不清楚在活化催化过程中NBD之间如何相互作用。为了回答这个问题,我着重研究了两个NBD中保守的赖氨酸残基(Lys16和Lys335),这些残基被认为在同源NifH的亚基相互作用中起作用。Lys16的改变对类金属没有明显的敏感性,但是Lys335突变体对砷的抵抗力比野生型低。叠氮基ATP标记研究表明,尽管K16Q和K335Q都在NBD1和NBD2上都结合核苷酸,但结合亲和力的顺序依次是:野生型> K16Q> K335Q。更有趣的是,尽管K16Q在NBD1或NBD2处均水解ATP,但K335Q ArsA在这两个位点均未显示ATP水解。根据以上数据,我们提出与NifH类似,Lys335参与NBD1上结合核苷酸的电荷稳定化,因此参与ATPase活性的激活。 Lys16可能与NBD2上结合核苷酸的负电荷具有很强的静电相互作用,因此距离可能稍远,因此,Lys16的改变对ATPase活性没有明显影响。保守的天冬氨酸Asp142和Asp447分别位于A1和A2信号转导域,也观察到类似现象。虽然Asp142的改变会导致Mg2 +与NBD1的结合丧失,但发现Asp447对Mg2 +的结合并不像Asp142那样关键。;目标2:鉴定来自碱性嗜碱金属QYMF中新型ars操纵子的ArsA1 / 2。关于砷的第二种载体Acr3知之甚少。该家族的成员存在于细菌,古细菌和真菌中。人们认为,鉴定含有arsA1,arsA2和Amacr3的金属假单胞菌QYMF中新颖的ars操纵子是令人发指的。这是第一次发现acr3代替arsB在操纵子中与arsA共存。我已经克隆了这种新型操纵子,并表明它在对砷敏感的大肠杆菌中表达后赋予砷抗性。我还确定了纯化的金属链霉菌ArsA1-ArsA2复合物与其R773同源物具有相似的特征。;目标3:金属链霉菌QYMF的Acr3砷转运蛋白的膜拓扑。但是,迄今为止,尚无有关Acr3系列任何成员的机械数据。为了能够合理地研究转运蛋白的功能,重要的是对转运蛋白的结构有基本的了解。在这里,我使用扫描半胱氨酸可及性诱变(SCAM)研究AmAcr3的膜拓扑。通过诱变在“无半胱氨酸”(C27 / 91S)骨架中引入了34个单个半胱氨酸,并用膜可渗透和膜不可渗透的硫醇特异性试剂,3-(N-马来酰亚胺基丙酰)生物细胞素(Biotin马来酰亚胺)探测了这些半胱氨酸的侧面。或BM)和4-乙酰氨基-4'-马来酰亚胺基-2,2'-二磺酸(AMS)。数据表明N末端和C末端都位于细胞质中,并提出了10-TM模型。此外,使用外翻膜囊泡进行的能量学研究表明,As(III)转运需要DeltapH和Deltapsi。

著录项

  • 作者

    Fu, Hsueh-Liang.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Biology Molecular.;Chemistry Biochemistry.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;微生物学;生物化学;
  • 关键词

  • 入库时间 2022-08-17 11:37:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号