首页> 外文学位 >The properties of root systems of grassland species and their relationships to ecosystem properties.
【24h】

The properties of root systems of grassland species and their relationships to ecosystem properties.

机译:草地物种根系的特性及其与生态系统特性的关系。

获取原文
获取原文并翻译 | 示例

摘要

I examined a suite of ecophysiological, whole-plant, and plant-associated ecosystem traits for 33 species common in the grassland flora of central Minnesota, USA that were grown for five years in monoculture on low-N soils. A major finding of this study is that nonlegumes appear to be best arrayed along one continuous axis that encompasses ecophysiological, whole-plant, and associated ecosystem traits as well as the production and maintenance of biomass on low-N soils. Legumes vary greatly with cool-season legumes having not only earlier biological activity, but also greater rates of N fixation and total production than warm-season legumes.; In another experiment, I examined more in detail the construction, production, and placement of fine and coarse belowground biomass in the soil profile of eleven grassland species after having been grown in the field for two and a half growing seasons. There was little support for functional dichotomies between C3 and C4 species or between grasses and forbs. Among the findings, legumes depleted water evenly throughout the soil profile, with little capacity for acquisition of inorganic nitrogen throughout the lm soil profile. The three rhizomatous species had shallow fine root distributions, a large relative investment in shallow rhizomes, and moisture and NO 3- levels were low in shallow soils, but high at depth. Tallgrass species maintained a large standing root biomass of high-density, low-nitrogen fine roots, and acquire nitrogen and water from a large, deep volume of soil, in which inorganic nitrogen is present in low concentrations.; I tested the effects of plant species and plant size on root properties, soil NO3- concentrations, soil moisture, and soil CO2 flux by harvesting plants in their second and third years of growth. As plants increased in size, root tissue density increased and diameter decreased, consistent with cortical loss associated with the aging of roots. For non-legumes, increases in fine root C:N with increasing biomass reflected greater plant-induced lowering of nitrogen availability as soil NO3- concentrations decreased with increasing root biomass. For legumes, nitrogen fixation provided sufficient nitrogen to maintain constant C:N ratios in fine roots as plants increased in size. Neither the relative amounts of biomass in coarse and fine roots nor the depth placement of fine roots in the soil profile changed as plants increased in size.
机译:我检查了一套生态生理,全植物和与植物相关的生态系统特征,这些特征是在美国明尼苏达州中部的草地植物区系中常见的33种物种的,这些物种在低氮土壤上单种养殖了五年。这项研究的主要发现是,非豆科植物似乎最好沿着一个连续的轴排列,该轴涵盖了生态生理学,整株植物以及相关的生态系统特征,以及在低氮土壤上生物量的产生和维持。豆科植物的变化很大,凉季豆科植物不仅具有较早的生物活性,而且固氮率和总产量也比暖季豆科植物高。在另一个实验中,我在田野中生长了两个半生长季后,更详细地研究了11种草地物种的土壤剖面中细小和粗糙的地下生物量的构造,生产和位置。在C3和C4物种之间或在草和草之间的功能二分法几乎没有支持。在这些发现中,豆科植物在整个土壤剖面中平均消耗了水分,而在整个lm土壤剖面中几乎没有获取无机氮的能力。这三种根茎种的根部分布较浅,在根茎上的相对投入较大,浅层土壤中的水分和NO 3-含量较低,但深度较高。高草种保持着高密度,低氮细根的大量立根生物量,并从大而深的土壤(其中无机氮含量低)中获取氮和水。我通过在植物生长的第二年和第三年收获植物,测试了植物种类和植物大小对根系特性,土壤NO3-浓度,土壤湿度和土壤CO2通量的影响。随着植物大小的增加,根组织密度增加且直径减小,这与与根衰老有关的皮质损失一致。对于非豆科植物,细根碳氮比随生物量的增加而增加,这反映了植物诱导的氮利用率降低,因为土壤NO3-浓度随根生物量的增加而降低。对于豆类,固氮作用提供了足够的氮,以随着植物大小的增加而在细根中保持恒定的C:N比。粗大根和细根中生物量的相对数量以及土壤剖面中细根的深度位置都不会随着植物大小的增加而改变。

著录项

  • 作者

    Craine, Joseph Mitchell.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Biology Ecology.; Agriculture Soil Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生态学(生物生态学);土壤学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号