首页> 外文学位 >Optimization of gas well completion and production practices.
【24h】

Optimization of gas well completion and production practices.

机译:优化气井完井和生产实践。

获取原文
获取原文并翻译 | 示例

摘要

In water drive gas reservoirs, wells can be completed with a long perforated interval and produced at high rates to minimize abandonment pressure and maximize recovery. Alternatively, the perforations can be limited to the top of the productive interval and the well produced at a low rate in an effort to prevent coning which results in high abandonment pressures if the strength of the aquifer is adequate to support reservoir pressure. This study uses a reservoir simulation coning model to evaluate these two conflicting completion and production practices. The impact of completion interval, gas production rate, and reservoir permeability were evaluated.; Ultimate gas recovery was found to be largely insensitive to variations in perforated interval and production rate in high permeability systems. Ultimate water production, however, was found to increase at high gas rates and lengthened perforated intervals. In lower permeability systems, ultimate gas recovery was found to increase significantly as production rates were increased, while ultimate water production was actually observed to fall. Sensitivity analysis of vertical to horizontal permeability ratio, fluid density contrast, relative permeability, and formation dip did not alter these conclusions.; The conclusion that elevated production rates can be expected to have no detrimental impact on ultimate gas recovery suggests that gas rates should be maximized in low water disposal cost situations. This finding favors the completion of an interval sufficiently long to maximize production rate and thereby insure that gas recovery and present value of gas reserves are maximized. In high water disposal cost situations, however, it should be recognized that this strategy might result in elevated water production in high permeability systems.
机译:在水驱气藏中,可以较长的射孔间隔完井,并以高生产率生产,以最大程度降低抛弃压力并最大限度地提高采收率。或者,可以将射孔限制在生产区间的顶部,并以较低的速度生产井,以防止锥度,如果含水层的强度足以支撑储层压力,则锥度会导致较高的抛弃压力。这项研究使用油藏模拟锥模型来评估这两个相互矛盾的完井和生产实践。评估完井间隔,产气率和储层渗透率的影响。发现最终气体回收率对高渗透率系统中射孔间隔和生产率的变化不敏感。然而,发现最终的水产量在高气体速率下增加并且穿孔间隔延长。在较低渗透率的系统中,发现最终的气体采收率随着生产率的提高而显着增加,而实际的最终产水量却下降了。垂直与水平渗透率比,流体密度对比,相对渗透率和地层倾角的敏感性分析并没有改变这些结论。可以预期提高生产率对最终的天然气采收率没有不利影响的结论表明,在低水处理成本的情况下,应该使天然气的采出率最大化。该发现有利于完成足够长的间隔以使生产率最大化,从而确保气体回收率和天然气储量的现值最大化。但是,在高水处理成本的情况下,应该认识到该策略可能会导致高渗透性系统中水的产量增加。

著录项

  • 作者

    McMullan, John H.;

  • 作者单位

    Louisiana State University and Agricultural & Mechanical College.;

  • 授予单位 Louisiana State University and Agricultural & Mechanical College.;
  • 学科 Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 石油、天然气工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号