首页> 外文学位 >Landscape-scale prediction of forest productivity by hyperspectral remote sensing of canopy nitrogen.
【24h】

Landscape-scale prediction of forest productivity by hyperspectral remote sensing of canopy nitrogen.

机译:通过冠层氮的高光谱遥感对森林生产力的景观尺度预测。

获取原文
获取原文并翻译 | 示例

摘要

Foliar nitrogen concentration represents a direct and primary link between carbon and nitrogen cycling in terrestrial ecosystems. Although foliar N is used by many ecosystem models to predict leaf-level photosynthetic rates, it has rarely been examined as a direct scalar to stand-level carbon gain. Significant improvements in remote sensing detector technology in the list decade now allow for improved landscape-level estimation of the biochemical attributes of forest ecosystems.; In this study, relationships among forest growth (aboveground net primary productivity (ANPP) and aboveground woody biomass production (AWBP)), canopy chemistry and structure, and high resolution imaging spectrometry were examined for 88 long-term forest growth inventory plots maintained by the USDA Forest Service within the 300,000 ha White Mountain National Forest, New Hampshire.; Analysis of plot-level data demonstrates a highly predictive relationship between whole canopy nitrogen concentration (g/100 g) and aboveground forest productivity (ANPP: R2 = 0.81, p 0.000; AWBP: R 2 = 0.86, p 0.000) within and among forest types. Forest productivity was more strongly related to mass-based foliar nitrogen concentration than with either total canopy N or canopy leaf area.; Empirical relationships were developed among spectral data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and field-measured canopy nitrogen concentration (mass basis). Results of this analysis suggest that hyperspectral remote sensing can be used to accurately predict foliar nitrogen concentration, by mean of a full-spectrum partial least squares calibration method, both within a single scene (R2 = 0.84, SECV = 0.23) and across a large number of contiguous images (R2 = 82, SECV = 0.25), as well as between image dates (R2 = 0.69, SECV = 0.25).; Forest productivity coverages for the White Mountain National Forest were developed by estimating whole canopy foliar N concentration from AVIRIS spectral response. Image spatial patterns broadly reflect the distribution of functional types, while fine scale spatial variation results from a variety of natural and anthropogenic factors. This approach provides the potential to increase the accuracy of forest growth and carbon gain estimates at the landscape level by providing information at the fine spatial scale over which environmental characteristics and human land use vary.
机译:叶氮浓度代表着陆地生态系统中碳和氮循环之间的直接和主要联系。尽管许多生态系统模型都使用叶面氮来预测叶片水平的光合速率,但很少将其作为直立的标量转化为标准水平的碳吸收量。在过去的十年中,遥感探测器技术的重大改进现在允许对森林生态系统的生化特性进行景观一级的估计。在这项研究中,我们检查了88个由森林保护区维持的长期森林生长清单小区,探讨了森林生长(地上净初级生产力(ANPP)和地上木质生物量生产(AWBP)),冠层化学和结构以及高分辨率成像光谱之间的关系。美国农业部森林服务局位于新罕布什尔州30万公顷的白山国家森林中。对地块级数据的分析表明,整个冠层氮浓度(g / 100 g)与地上森林生产力之间的高度预测性关系(ANPP:R 2 = 0.81,p <0.000; AWBP:R 2 = 0.86,p <0.000)。森林生产力与基于质量的叶面氮浓度的关系比与冠层总氮或冠层叶面积的关系更密切。在机载可见/红外成像光谱仪(AVIRIS)的光谱数据与实地测得的冠层氮浓度(质量基准)之间建立了经验关系。分析结果表明,通过全光谱偏最小二乘校正方法,高光谱遥感可用于在单个场景内准确预测叶氮浓度(R 2 = 0.84, SECV = 0.23)和大量连续图像(R 2 = 82,SECV = 0.25)以及图像日期之间(R 2 = 0.69,SECV) = 0.25)。通过根据AVIRIS光谱响应估算整个冠层叶N浓度来开发白山国家森林的森林生产力覆盖率。图像空间模式大致反映了功能类型的分布,而精细尺度的空间变化则是由多种自然和人为因素引起的。通过在环境特征和人类土地利用发生变化的精细空间尺度上提供信息,这种方法提供了提高森林景观和碳增加量估算准确性的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号