首页> 外文学位 >Probing vibrational relaxation dynamics in charge-transfer excited states: Synthesis, physical, and photophysical characterization of cyano-substituted polypyridyl complexes of ruthenium(II)
【24h】

Probing vibrational relaxation dynamics in charge-transfer excited states: Synthesis, physical, and photophysical characterization of cyano-substituted polypyridyl complexes of ruthenium(II)

机译:探测电荷转移激发态的振动弛豫动力学:氰基取代的钌(II)的多吡啶基配合物的合成,物理和光物理表征

获取原文
获取原文并翻译 | 示例

摘要

Photo-induced charge separation is the physical phenomenon underlying virtually all schemes geared toward the conversion of light into chemical, electrical, and/or mechanical energy. Charge separation is typically effected in a molecular system through charge-transfer excited states, in which photon absorption causes charge redistribution within the chromophore: maintaining, amplifying, or, in the least favorable circumstances, destroying the resulting chemical potential depends on dynamics that occur within the chromophore immediately following the absorptive event. In transition metal complexes a majority of excited state energy is dissipated through non-radiative decay. Despite the prominent role it plays in the deactivation of charge-transfer excited states, there is relatively known about the mechanism of non-radiative decay in charge transfer complexes.;Probing vibrational relaxation in transition metal complexes is not always a straightforward process. Often times information about vibrational relaxation from the initially excited Franck-Condon state to the long lived excited state is inferred from transient electronic absorption spectroscopy. Infrared spectroscopy is more direct way to probe the vibrational state of an electronic excited state. This dissertation investigates the fundamental photophysics of ruthenium polypyridyl complexes, in particular the non-radiative decay between the initial excited Franck-Condon state and the long lived excited state. The complexes studied in this dissertation incorporate cyanide groups as infrared tags in order to use infrared transient absorption spectroscopy, coupled with visible transient absorption spectroscopy, to probe the vibrational relaxation dynamics in ruthenium polypyridyl complexes.;Before ultrafast dynamics can be interpreted it is critical to have a solid understanding of the properties of both the initial Franck-Condon excited state and the long lived excited state. Nanosecond time-resolved spectroscopic techniques which can be used to probe the long lived excited state of transition metal complexes are discussed. These techniques are used to characterize the long lived excited states of a series of cyano-substituted ruthenium(II) bipyridine and terpyridine complexes. A combination of ultrafast infrared and visible absorption spectroscopies are used to probe the excited state dynamics in the series of cyano-substituted ruthenium(II) bipyridine complexes. By combining the two techniques it can be conclusively shown that small amplitude changes in the time resolved electronic absorption spectra on a ∼1-10 ps time scale are due to vibrational relaxation on the lowest energy excited state potential surface. The large energy difference between the cyano substituted bipyridine ligand and the unsubstituted bipyridine ligand allows for selectively localizing the initial excited state on either the cyano-substituted or unsubstituted bipyridine ligands. This potentially allows the dynamics associated with intramolecular vibrational redistribution to be decoupled from the dynamics associated with interligand electron transfer.
机译:光诱导的电荷分离是实际上所有旨在将光转换为化学能,电能和/或机械能的方案的物理现象。电荷分离通常在分子系统中通过电荷转移激发态进行,其中光子吸收会导致生色团内的电荷重新分布:维持,放大或在最不利的情况下破坏所得的化学势取决于内部发生的动力学。吸收事件后立即发生发色团。在过渡金属络合物中,大部分激发态能量通过非辐射衰变消散。尽管它在使电荷转移激发态失活中发挥了重要作用,但相对已知电荷转移复合物的非辐射衰减机理。探测过渡金属络合物的振动弛豫并不总是一个简单的过程。通常,从瞬态电子吸收光谱学可以推断出从最初激发的弗兰克-康登态到长寿命激发态的振动弛豫信息。红外光谱法是探测电子激发态振动状态的更直接方法。本文研究了钌多吡啶配合物的基本光物理性质,特别是初始激发的弗兰克-康登状态和长寿命的激发态之间的非辐射衰减。本论文研究的配合物以氰化物基团为红外标记,以便使用红外瞬态吸收光谱法和可见瞬态吸收光谱法来研究钌多吡啶基配合物的振动弛豫动力学。对初始弗兰克-康登激发态和长寿命激发态的性质都有扎实的了解。纳秒时间分辨光谱技术可用于探测过渡金属配合物的长寿命激发态。这些技术用于表征一系列氰基取代的钌(II)联吡啶和三联吡啶络合物的长寿命激发态。超快速红外光谱和可见光吸收光谱法的组合被用于探测一系列氰基取代的钌(II)联吡啶配合物的激发态动力学。通过将这两种技术结合起来,可以得出结论,在大约1-10 ps的时间尺度上,时间分辨的电子吸收谱中的小幅度变化是由于最低能量激发态势能面上的振动弛豫引起的。氰基取代的联吡啶配体和未取代的联吡啶配体之间的巨大能量差允许将初始激发态选择性地定位在氰基取代的或未取代的联吡啶配体上。这潜在地允许与分子内振动重新分布相关的动力学与与配体电子转移相关的动力学解耦。

著录项

  • 作者

    McCusker, Catherine Emily.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Inorganic chemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号